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B Proof of the Main Equivalence Result

In this Appendix, we present a proof of Theorem A.1.

We assume throughout that Ω = Ωi without loss of generality as all of the analysis here

considers only the sets of trades demanded by i and, for any price vectors p and p̄ such that

pΩi = p̄Ωi , we have that Di(p) = Di(p̄).

To prove Theorem A.1, we prove seven lemmata; we first show that all three demand

language concepts of full substitutability are equivalent.

Lemma 1. The DFS, DEFS, and DCFS conditions are all equivalent.

Proof. It is immediate that DEFS and DCFS each imply DFS. To complete the proof, we

show that DFS implies DEFS and that DFS implies DCFS.

DFS ⇒ DEFS: We first show that Part 1 of DFS implies Part 1 of DEFS. Consider two

price vectors p, p′ such that pω = p′ω for all ω ∈ Ωi→ and pω ≥ p′ω for all ω ∈ Ω→i, and

let Ω̃ ≡ {ω ∈ Ω : pω > p′ω}; note that Ω̃ ⊆ Ω→i. Fix an arbitrary Ψ ∈ Di(p); we need

to show that there exists a set Ψ′ ∈ Di(p′) that satisfies the requirements of Part 1 of

DEFS.

Let q be given by

qω =


pω − ε ω ∈ Ψ→i or ω ∈ [Ω r Ψ]i→

pω + ε ω ∈ [Ω r Ψ]→i or ω ∈ Ψi→
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for some sufficiently small ε > 0. Let q′ be given by

q′ω =


p′ω ω ∈ Ω̃

qω ω ∈ Ω r Ω̃

=



p′ω ω ∈ Ω̃

pω − ε ω ∈ Ψ→i r Ω̃ or ω ∈ [Ω r Ψ]i→ r Ω̃

pω + ε ω ∈ [Ω r Ψ]→i r Ω̃ or ω ∈ Ψi→ r Ω̃.

=



p′ω ω ∈ Ω̃

p′ω − ε ω ∈ Ψ→i r Ω̃ or ω ∈ [Ω r Ψ]i→ r Ω̃

p′ω + ε ω ∈ [Ω r Ψ]→i r Ω̃ or ω ∈ Ψi→ r Ω̃.

and let Ψ′ ∈ Di(q′). Let q̄′ be given by

q̄′ω =


q′ω − δ ω ∈ Ψ′→i or ω ∈ [Ω r Ψ′]i→

q′ω + δ ω ∈ [Ω r Ψ′]→i or ω ∈ Ψ′i→.

=



p′ω − δ ω ∈ Ψ′→i ∩ Ω̃ or ω ∈ [Ω r Ψ′]i→ ∩ Ω̃

p′ω + δ ω ∈ [Ω r Ψ′]→i ∩ Ω̃ or ω ∈ Ψ′i→ ∩ Ω̃

p′ω − ε− δ ω ∈ [Ψ′ ∩Ψ]→i r Ω̃ or ω ∈ [Ω r (Ψ′ ∪Ψ)]i→ r Ω̃

p′ω − ε+ δ ω ∈ [Ψ r Ψ′]→i r Ω̃ or ω ∈ [Ψ′ r Ψ]i→ r Ω̃

p′ω + ε− δ ω ∈ [Ψ′ r Ψ]→i r Ω̃ or ω ∈ [Ψ r Ψ′]i→ r Ω̃

p′ω + ε+ δ ω ∈ [Ω r (Ψ′ ∪Ψ)]→i r Ω̃ or ω ∈ [Ψ′ ∩Ψ]i→ r Ω̃
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for some sufficiently small δ < ε. Finally, let q̄ be given by

q̄ω =


qω ω ∈ Ω̃

q̄′ω ω ∈ Ω r Ω̃.

=



pω − ε ω ∈ Ψ→i ∩ Ω̃ or ω ∈ [Ω r Ψ]i→ ∩ Ω̃

pω + ε ω ∈ [Ω r Ψ]→i ∩ Ω̃ or ω ∈ Ψi→ ∩ Ω̃

pω − ε− δ ω ∈ [Ψ′ ∩Ψ]→i r Ω̃ or ω ∈ [Ω r (Ψ′ ∪Ψ)]i→ r Ω̃

pω − ε+ δ ω ∈ [Ψ r Ψ′]→i r Ω̃ or ω ∈ [Ψ′ r Ψ]i→ r Ω̃

pω + ε− δ ω ∈ [Ψ′ r Ψ]→i r Ω̃ or ω ∈ [Ψ r Ψ′]i→ r Ω̃

pω + ε+ δ ω ∈ [Ω r (Ψ′ ∪Ψ)]→i r Ω̃ or ω ∈ [Ψ′ ∩Ψ]i→ r Ω̃.

=



qω ω ∈ Ψ→i ∩ Ω̃ or ω ∈ [Ω r Ψ]i→ ∩ Ω̃

qω ω ∈ [Ω r Ψ]→i ∩ Ω̃ or ω ∈ Ψi→ ∩ Ω̃

qω − δ ω ∈ [Ψ′ ∩Ψ]→i r Ω̃ or ω ∈ [Ω r (Ψ′ ∪Ψ)]i→ r Ω̃

qω + δ ω ∈ [Ψ r Ψ′]→i r Ω̃ or ω ∈ [Ψ′ r Ψ]i→ r Ω̃

qω − δ ω ∈ [Ψ′ r Ψ]→i r Ω̃ or ω ∈ [Ψ r Ψ′]i→ r Ω̃

qω + δ ω ∈ [Ω r (Ψ′ ∪Ψ)]→i r Ω̃ or ω ∈ [Ψ′ ∩Ψ]i→ r Ω̃.

We first show five intermediate results on the effects of our price perturbations.

Fact 1: Di(q) = {Ψ}. We have, for any Φ 6= Ψ, that1

Ui(Ψ; q)− Ui(Φ; q) = Ui(Ψ; p)− Ui(Φ; p) + |Ψ	 Φ|ε ≥ |Ψ	 Φ|ε > 0.

where the equality follows from the definition of q, the first inequality follows from

the fact that Ψ is optimal at p, i.e., Ψ ∈ Di(p), and the last inequality follows as
1Here, we use 	 to denote the symmetric difference between two sets, i.e., Ψ	 Φ = (Ψ r Φ) ∪ (Φ r Ψ).
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Φ 6= Ψ. Thus Di(q) = {Ψ}.

Fact 2: Di(q̄) = {Ψ}. Consider an arbitrary Φ ∈ Di(q) and an arbitrary Ξ /∈ Di(q).

We have that

Ui([Φ; q̄])− Ui([Ξ; q̄]) ≥ Ui([Φ; q])− Ui([Ξ; q])− |Φ	 Ξ|δ > 0,

where the first inequality follows from the definition of q̄ and the second inequality

follows as Φ is optimal at q, Ξ is not optimal at q, and δ is sufficiently small. Thus,

Ξ /∈ Di(q̄) and so Di(q̄) ⊆ Di(q). Combining this observation with Fact 1 yields

Di(q̄) = {Ψ}.

Fact 3: Di(q′) ⊆ Di(p′). Consider an arbitrary Φ ∈ Di(p′) and an arbitrary Ξ /∈ Di(p′).

We have that

Ui([Φ; q′])− Ui([Ξ; q′]) ≥ Ui([Φ; p′])− Ui([Ξ; p′])− |Φ	 Ξ|ε > 0,

where the first inequality follows from the definition of q′ and the second inequality

follows as Φ is optimal at p′, Ξ is not optimal at p′, and ε is sufficiently small.

Thus, Ξ /∈ Di(q′) and so Di(q′) ⊆ Di(p′).

Fact 4: Di(q̄′) ⊆ Di(q′). Consider an arbitrary Φ ∈ Di(q′) and an arbitrary Ξ /∈ Di(q′).

We have that

Ui([Φ; q̄′])− Ui([Ξ; q̄′]) ≥ Ui([Φ; q′])− Ui([Ξ; q′])− |Φ	 Ξ|δ > 0,

where the first inequality follows from the definition of q′ and the second inequality

follows as Φ is optimal at q′, Ξ is not optimal at q′, and δ is sufficiently small.

Thus, Di(q̄′) ⊆ Di(q′).
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Fact 5: Di(q̄′) = {Ψ′}. We have that, for any Φ′ 6= Ψ′,

Ui(Ψ′; q̄′)− Ui(Φ′; q̄′) = Ui(Ψ′; q′)− Ui(Φ; q′) + |Ψ′ 	 Φ′|δ ≥ |Ψ′ 	 Φ′|δ > 0.

where the equality follows from the definition of q̄′, the first inequality follows from

the fact that Ψ′ is optimal at q′, i.e., Ψ′ ∈ Di(q′), and the last inequality follows

as Φ′ 6= Ψ′. Thus Di(q̄′) = {Ψ′}.

By Part 1 of DFS, since Di(q̄) = {Ψ} by Fact 2 and Di(q̄′) = {Ψ′} by Fact 5, we have

that {ω ∈ Ψ′→i : pω = p′ω} ⊆ Ψ→i and Ψi→ ⊆ Ψ′i→. Thus, as Ψ′ ∈ Di(p′) by Facts 3–5,

we have that Ψ′ satisfies the requirements of Part 1 of DEFS.

The proof that Part 2 of DFS implies Part 2 of DEFS is analogous.

DFS ⇒ DCFS: We first show that Part 1 of DFS implies Part 1 of DCFS. Consider two

price vectors p, p′ such that pω = p′ω for all ω ∈ Ωi→ and pω ≥ p′ω for all ω ∈ Ω→i, and

let Ω̃ ≡ {ω ∈ Ω : pω > p′ω}; note that Ω̃ ⊆ Ω→i. Fix an arbitrary Ψ′ ∈ Di(p′); we need

to show that there exists a set Ψ ∈ Di(p) that satisfies the requirements of Part 1 of

DCFS.

Let q′ be given by

q′ω =


p′ω − ε ω ∈ Ψ′→i or ω ∈ [Ω r Ψ′]i→

p′ω + ε ω ∈ [Ω r Ψ′]→i or ω ∈ Ψ′i→
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for some small ε > 0. Let q be given by

qω =


pω ω ∈ Ω̃

q′ω ω ∈ Ω r Ω̃

=



pω ω ∈ Ω̃

p′ω − ε ω ∈ Ψ′→i r Ω̃ or ω ∈ [Ω r Ψ′]i→ r Ω̃

p′ω + ε ω ∈ [Ω r Ψ′]→i r Ω̃ or ω ∈ Ψ′i→ r Ω̃.

=



pω ω ∈ Ω̃

pω − ε ω ∈ Ψ′→i r Ω̃ or ω ∈ [Ω r Ψ′]i→ r Ω̃

pω + ε ω ∈ [Ω r Ψ′]→i r Ω̃ or ω ∈ Ψ′i→ r Ω̃.

and let Ψ ∈ Di(q). Let q̄ be given by

q̄ω =


qω − δ ω ∈ Ψ→i or ω ∈ [Ω r Ψ]i→

qω + δ ω ∈ [Ω r Ψ]→i or ω ∈ Ψi→.

=



pω − δ ω ∈ Ψ→i ∩ Ω̃ or ω ∈ [Ω r Ψ]i→ ∩ Ω̃

pω + δ ω ∈ [Ω r Ψ]→i ∩ Ω̃ or ω ∈ Ψi→ ∩ Ω̃

pω − ε− δ ω ∈ [Ψ′ ∩Ψ]→i r Ω̃ or ω ∈ [Ω r (Ψ′ ∪Ψ)]i→ r Ω̃

pω − ε+ δ ω ∈ [Ψ′ r Ψ]→i r Ω̃ or ω ∈ [Ψ r Ψ′]i→ r Ω̃

pω + ε− δ ω ∈ [Ψ r Ψ′]→i r Ω̃ or ω ∈ [Ψ′ r Ψ]i→ r Ω̃

pω + ε+ δ ω ∈ [Ω r (Ψ′ ∪Ψ)]→i r Ω̃ or ω ∈ [Ψ′ ∩Ψ]i→ r Ω̃.
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Finally, let q̄′ be given by

q̄′ω =


q′ω ω ∈ Ω̃

q̄ω ω ∈ Ω r Ω̃.

=



p′ω − ε ω ∈ Ψ′→i ∩ Ω̃ or ω ∈ [Ω r Ψ′]i→ ∩ Ω̃

p′ω + ε ω ∈ [Ω r Ψ′]→i ∩ Ω̃ or ω ∈ Ψ′i→ ∩ Ω̃

p′ω − ε− δ ω ∈ [Ψ′ ∩Ψ]→i r Ω̃ or ω ∈ [Ω r (Ψ′ ∪Ψ)]i→ r Ω̃

p′ω − ε+ δ ω ∈ [Ψ′ r Ψ]→i r Ω̃ or ω ∈ [Ψ r Ψ′]i→ r Ω̃

p′ω + ε− δ ω ∈ [Ψ r Ψ′]→i r Ω̃ or ω ∈ [Ψ′ r Ψ]i→ r Ω̃

p′ω + ε+ δ ω ∈ [Ω r (Ψ′ ∪Ψ)]→i r Ω̃ or ω ∈ [Ψ′ ∩Ψ]i→ r Ω̃.

=



q′ω ω ∈ Ψ′→i ∩ Ω̃ or ω ∈ [Ω r Ψ′]i→ ∩ Ω̃

q′ω ω ∈ [Ω r Ψ′]→i ∩ Ω̃ or ω ∈ Ψ′i→ ∩ Ω̃

q′ω − δ ω ∈ [Ψ′ ∩Ψ]→i r Ω̃ or ω ∈ [Ω r (Ψ′ ∪Ψ)]i→ r Ω̃

q′ω + δ ω ∈ [Ψ′ r Ψ]→i r Ω̃ or ω ∈ [Ψ r Ψ′]i→ r Ω̃

q′ω − δ ω ∈ [Ψ r Ψ′]→i r Ω̃ or ω ∈ [Ψ′ r Ψ]i→ r Ω̃

q′ω + δ ω ∈ [Ω r (Ψ′ ∪Ψ)]→i r Ω̃ or ω ∈ [Ψ′ ∩Ψ]i→ r Ω̃.

We first show five intermediate results on the effects of our price perturbations.

Fact 1: Di(q′) = {Ψ′}. We have, for any Φ′ 6= Ψ′, that

Ui(Ψ′; q′)− Ui(Φ′; q′) = Ui(Ψ′; p′)− Ui(Φ′; p′) + |Ψ′ 	 Φ′|ε ≥ |Ψ′ 	 Φ′|ε > 0.

where the equality follows from the definition of q′, the first inequality follows

from the fact that Ψ′ is optimal at p′, i.e., Ψ′ ∈ Di(p′), and the last inequality

follows as Φ′ 6= Ψ′. Thus Di(q′) = {Ψ′}.
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Fact 2: Di(q̄′) = {Ψ′}. Consider an arbitrary Φ ∈ Di(q′) and an arbitrary Ξ /∈ Di(q′).

For δ small enough, we have that,

Ui([Φ; q̄′])− Ui([Ξ; q̄′]) ≥ Ui([Φ; q′])− Ui([Ξ; q′])− |Φ	 Ξ|δ > 0,

where the first inequality follows from the definition of q̄′ and the second inequality

follows as Φ is optimal at q′, Ξ is not optimal at q′, and δ is sufficiently small.

Thus, Ξ /∈ Di(q̄′) and so Di(q̄′) ⊆ Di(q′). Combining this observation with Fact 1

yields Di(q̄′) = {Ψ′}.

Fact 3: Di(q) ⊆ Di(p). Consider an arbitrary Φ ∈ Di(p) and an arbitrary Ξ /∈ Di(p).

We have that

Ui([Φ; q])− Ui([Ξ; q]) ≥ Ui([Φ; p])− Ui([Ξ; p])− |Φ	 Ξ|ε > 0,

where the first inequality follows from the definition of q and the second inequality

follows as Φ is optimal at p, Ξ is not optimal at p, and ε is sufficiently small. Thus,

Ξ /∈ Di(q) and so Di(q) ⊆ Di(p).

Fact 4: Di(q̄) ⊆ Di(q). Consider an arbitrary Φ ∈ Di(q) and an arbitrary Ξ /∈ Di(q).

We have that

Ui([Φ; q̄])− Ui([Ξ; q̄]) ≥ Ui([Φ; q])− Ui([Ξ; q])− |Φ	 Ξ|δ > 0,

where the first inequality follows from the definition of q̄ and the second inequality

follows as Φ is optimal at q, Ξ is not optimal at q, and ε is sufficiently small. Thus,

Di(q̄) ⊆ Di(q).

Fact 5: Di(q̄) = {Ψ}. We have that, for any Φ 6= Ψ,

Ui(Ψ; q̄)− Ui(Φ; q̄) = Ui(Ψ; q)− Ui(Φ; q) + |Ψ	 Φ|δ ≥ |Ψ	 Φ|δ > 0.
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Figure 1: Proof strategy for Theorem A.1. Any unlabeled implication is immediate.

where the equality follows from the definition of q̄, the first inequality follows from

the fact that Ψ is optimal at q, i.e., Ψ ∈ Di(q), and the last inequality follows as

Φ 6= Ψ. Thus Di(q̄) = {Ψ}.

By Part 1 of DFS, since {Ψ′} = Di(q̄′) by Fact 2 and Di(q̄) = {Ψ} by Fact 5, we have

that {ω ∈ Ψ′→i : pω = p′ω} ⊆ Ψ→i and Ψi→ ⊆ Ψ′i→. Thus, as Ψ ∈ Di(p) by Facts 3–5,

we have that Ψ satisfies the requirements of Part 1 of DCFS.

The proof that Part 2 of DFS implies Part 2 of DCFS is analogous.

This completes the proof of Lemma 1.

We now complete the proof of Theorem A.1 by proving that DFS implies CEFS (Lemma 2),

DFS implies CCFS (Lemma 3), DFS implies IIFS (Lemma 5), DFS implies IDFS (Lemma 6),

CFS implies DFS (Lemma 4), and IFS implies DFS (Lemma 7), as exemplified in Figure 1.

Lemma 2. If the preferences of agent i satisfy the DFS condition, then they satisfy the

CEFS condition.

Proof. Consider two finite sets of contracts Y, Z such that Yi→ = Zi→ and Y→i ⊆ Z→i. Let

Y ∗ ∈ Ci(Y ). We will show that there exists a Z∗ ∈ Ci(Z) such that (Y→irY ∗→i) ⊆ (Z→irZ∗→i)

and Y ∗i→ ⊆ Z∗i→.

Let

Ỹ = Y ∪ {(ω,M) ∈ X : ω ∈ Ω→i} ∪ {(ω,−M) ∈ X : ω ∈ Ωi→}

Z̃ = Z ∪ {(ω,M) ∈ X : ω ∈ Ω→i} ∪ {(ω,−M) ∈ X : ω ∈ Ωi→}

10



where M is sufficiently large so that i would never choose (ω,M) if ω ∈ Ω→i or (ω,−M)

if ω ∈ Ωi→.2 It is immediate that Ỹi→ = Z̃i→ and Ỹ→i ⊆ Z̃→i. It is also immediate that

Ci(Y ) = Ci(Ỹ ) and Ci(Z) = Ci(Z̃).

Let

qỸω =


min{pω ∈ R : ∃(ω, pω) ∈ Ỹ } ω ∈ Ω→i

max{pω ∈ R : ∃(ω, pω) ∈ Ỹ } ω ∈ Ωi→

qZ̃ω =


min{pω ∈ R : ∃(ω, pω) ∈ Z̃} ω ∈ Ω→i

max{pω ∈ R : ∃(ω, pω) ∈ Z̃} ω ∈ Ωi→;

note that qỸ and qZ̃ are well-defined as, for every ω ∈ Ω, there exists a contract (ω, pω) ∈

Ỹ ⊆ Z̃ by construction. Moreover, since Ỹi→ = Z̃i→ and Ỹ→i ⊆ Z̃→i, we have that qỸω = qZ̃ω

for all ω ∈ Ωi→ and qỸω ≥ qZ̃ω for all ω ∈ Ω→i.

Let Ψ = τ(Y ∗); we have that Ψ ∈ Di(qỸ ). Part 1 of DEFS then implies that there exists

a Ψ′ ∈ Di(qZ̃) such that

{ω ∈ Ψ′→i : qỸω = qZ̃ω } ⊆ Ψ→i (3)

Ψi→ ⊆ Ψ′i→;

let Z∗ = κ[Ψ′; qZ̃ ]; note that Z∗ ∈ Ci(Z̃) = Ci(Z) as Ψ′ is optimal at qZ̃ and qZ̃ω is the best

price for ω available to i from Z̃. Thus, we can rewrite (3) as

{ω ∈ τ(Z∗)→i : qỸω = qZ̃ω } ⊆ τ(Y ∗)→i (4)

τ(Y ∗)i→ ⊆ τ(Z∗)i→;

If (ω, pω) ∈ [Y r Y ∗]→i, then either:
2It is always possible to find M large enough as utility is bounded from above and ui(∅) ∈ R.
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• ω /∈ τ(Y ∗) = Ψ and so either ω /∈ τ(Z∗) or qỸω 6= qZ̃ω by (4). In the former case,

it is immediate that (ω, pω) /∈ Z∗→i; in the later case, since qỸω ≥ qZ̃ω , we must have

that qỸω > qZ̃ω and so there exists a (ω, p̄ω) ∈ Z such that p̄ω < pω, and therefore

(ω, pω) /∈ Z∗→i.

• ω ∈ τ(Y ∗) but there exists (ω, p̄ω) ∈ Y such that p̄ω < pω. In this case, (ω, p̄ω) ∈ Z as

Y ⊆ Z, and therefore (ω, pω) /∈ Z∗→i.

Thus, [Y r Y ∗]→i ⊆ [Z r Z∗]→i.

If (ω, pω) ∈ Y ∗i→, then ω ∈ τ(Z∗) by (4). Moreover, if (ω, pω) ∈ Y ∗i→ then pω is the maximal

price in Y for ω and so, as Y ∗i→ = Z∗i→, we have that pω is the maximal price in Z for ω.

Combining these last two observations implies that (ω, pω) ∈ Z∗i→, and so Y ∗i→ ⊆ Z∗i→.

Thus, Z∗ satisfies all the requirements of Part 1 of CEFS.

The proof that DFS implies Part 2 of CEFS is analogous.

Lemma 3. If the preferences of agent i satisfy the DFS condition, then they satisfy the

CCFS condition.

Proof. The proof proceeds analogously to the proof of Lemma 2.

Lemma 4. If the preferences of agent i satisfy the CFS condition, then they satisfy the DFS

condition.

Proof. We first show that Part 1 of CFS implies Part 1 of DFS. For any agent i and price

vector p ∈ RΩ, let

Xi(p) ≡ {(ω, p̂ω) : ω ∈ Ω→i and p̂ω ≥ pω} ∪ {(ω, p̂ω) : ω ∈ Ωi→ and p̂ω ≤ pω};

that is, Xi(p) effectively denotes the set of contracts available to agent i under prices p.3

3By this, we mean that, in principle, an agent pay more for an upstream trade and receive less for a
downstream trade.
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Let the price vectors p, p′ ∈ RΩ be such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all

ω ∈ Ωi→, and p′ω ≤ pω for all ω ∈ Ω→i; let {Ψ} = Di(p) and {Ψ′} = Di(p′). Let Y = Xi(p)

and Z = Xi(p′). Clearly, Yi→ = Zi→ and Y→i ⊆ Z→i. Furthermore, it is immediate that

{κ([Ψ; p])} = Ci(Y ), and similarly, {κ([Ψ; p′])} = Ci(Z). Thus, Part 1 of CFS implies that

Y→i r [κ([Ψ; p])]→i ⊆ Z→i r [κ([Ψ′; p′])]→i (5)

[κ([Ψ; p])]i→ ⊆ [κ([Ψ′; p′])]i→. (6)

From (5), we see that, if ω ∈ τ([κ([Ψ′; p′])]→i), i.e., if ω ∈ Ψ′→i, and p′ω = pω, then (ω, p′ω) ∈

[κ([Ψ; p])]→i, and so ω ∈ Ψ→i—in other words, {ω ∈ Ψ′→i : p′ω = pω} ⊆ Ψ→i. Furthermore, as

[κ([Ψ; p])]i→ ⊆ [κ([Ψ′; p′])]i→ by (6) and pω = p′ω for each ω ∈ Ωi→, we have that Ψ′i→ ⊆ Ψi→.

Thus, Ψ′ satisfies the requirements of Part 1 of DFS.

The proof that Part 2 of CFS implies Part 2 of DFS is analogous.

Lemma 5. If the preferences of agent i satisfy the DFS condition, then they satisfy the IIFS

condition.

Proof. It is enough to show that DEFS and DCFS jointly imply IIFS, as DFS implies both

DEFS and DCFS by Lemma 1. Take two price vectors p, p′ ∈ RΩ such that p ≤ p′, and let

Ψ ∈ Di(p) be arbitrary. We will show that there exists a set of trades Ψ′ ∈ Di(p′) such that

ei,ω(Ψ) ≤ ei,ω(Ψ′) for all ω ∈ Ωi such that pω = p′ω.

We let

p?ω =


p′ω ω ∈ Ω→i

pω ω ∈ Ωi→;

thus, p?ω = pω for all ω ∈ Ωi→ and p?ω ≥ pω for all ω ∈ Ω→i. Part 1 of DCFS then implies that
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there exists a Ψ? ∈ Di(p?) such that

{ω ∈ Ψ→i : pω = p?ω} ⊆ Ψ?
→i (7)

Ψ?
i→ ⊆ Ψi→.

Now, note that p?ω = p′ω for all ω ∈ Ω→i and p?ω ≤ p′ω for all ω ∈ Ωi→. Part 2 of DEFS then

implies that there exists a Ψ′ ∈ Di(p′) such that

{ω ∈ Ψ′i→ : p?ω = p′ω} ⊆ Ψ?
i→ (8)

Ψ?
→i ⊆ Ψ′→i.

Combining (7) and (8) yields

{ω ∈ Ψ→i : pω = p?ω} ⊆ Ψ?
→i ⊆ Ψ′→i

{ω ∈ Ψ′i→ : p?ω = p′ω} ⊆ Ψ?
i→ ⊆ Ψi→.

Recalling the definition of p?, we obtain

{ω ∈ Ψ→i : pω = p′ω} ⊆ Ψ′→i

{ω ∈ Ψ′i→ : pω = p′ω} ⊆ Ψi→;

this implies ei,ω(Ψ) ≤ ei,ω(Ψ′) for all ω ∈ Ωi such that pω = p′ω.

Lemma 6. If the preferences of agent i satisfy the DFS condition, then they satisfy the ICFS

condition.

Proof. It is enough to show that DEFS and DCFS jointly imply IDFS, as DFS implies both

DEFS and DCFS by Lemma 1. Take two price vectors p, p′ ∈ RΩ such that p ≤ p′, and let

Ψ′ ∈ Di(p′) be arbitrary. We will show that there exists a set of trades Ψ ∈ Di(p) such that

ei,ω(Ψ) ≤ ei,ω(Ψ′) for all ω ∈ Ωi such that pω = p′ω.
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Let

p?ω =


p′ω ω ∈ Ω→i

pω ω ∈ Ωi→;

thus, p?ω = p′ω for all ω ∈ Ω→i and p?ω ≤ p′ω for all ω ∈ Ωi→. Part 2 of DCFS then implies that

there exists a Ψ? ∈ Di(p?) such that

{ω ∈ Ψ′i→ : p?ω = p′ω} ⊆ Ψ?
i→ (9)

Ψ?
→i ⊆ Ψ′→i.

Now, note that p?ω = pω for all ω ∈ Ωi→ and p?ω ≥ pω for all ω ∈ Ω→i. Part 1 of DEFS then

implies that there exists a Ψ ∈ Di(p) such that

{ω ∈ Ψ→i : p?ω = pω} ⊆ Ψ?
→i (10)

Ψ?
i→ ⊆ Ψi→.

Combining (9) and (10) yields

{ω ∈ Ψ′i→ : p?ω = p′ω} ⊆ Ψ?
i→ ⊆ Ψi→

{ω ∈ Ψ→i : p?ω = pω} ⊆ Ψ?
→i ⊆ Ψ′→i.

Recalling the definition of p?, we obtain

{ω ∈ Ψ′i→ : pω = p′ω} ⊆ Ψi→

{ω ∈ Ψ→i : pω = pω} ⊆ Ψ′→i;

this implies ei,ω(Ψ) ≤ ei,ω(Ψ′) for all ω ∈ Ωi such that pω = p′ω.
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Lemma 7. If the preferences of agent i satisfy the IFS condition, then they satisfy the DFS

condition.

Proof. Let the price vectors p, p′ ∈ RΩ be such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all

ω ∈ Ωi→, and p′ω ≤ pω for all ω ∈ Ω→i; let {Ψ} = Di(p) and {Ψ′} = Di(p′). As the preferences

of i satisfy the IFS condition, we have that ei,ω(Ψ′) ≤ ei,ω(Ψ) for all ω ∈ Ω→i such that pω = p′ω.

Thus, if pω = p′ω and ω ∈ Ψ′ then ω ∈ Ψ and so we have that {ω ∈ Ψ′→i : p′ω = pω} ⊆ Ψ→i.

Moreover, as the preferences of i satisfy the IFS condition, we have that ei,ω(Ψ′) ≤ ei,ω(Ψ) for

all ω ∈ Ωi→ such that pω = p′ω. Thus, if pω = p′ω and ω ∈ Ψ then ω ∈ Ψ′ and so, as pω = p′ω

for all pω = p′ω for all ω ∈ Ωi→, we have that Ψ→i ⊆ Ψ′→i.

The proof that Part 2 of IFS implies Part 2 of DFS is analogous.

C Proofs of the Results Presented in Sections 4–7

Proof of Proposition 1

Consider the intermediary i. Let Φ (with a typical element ϕ) denote the set of potential

inputs this intermediary faces, and let Ψ (with a typical element ψ) denote the set of potential

requests. The cost of using input ϕ to satisfy request ψ is given by cϕ,ψ. For convenience,

when ϕ and ψ are incompatible, we simply say that cϕ,ψ = +∞.

Let us now construct a “synthetic” agent ı̂ whose preferences will be identical to those

of agent i, yet will be represented in the form of “intermediary with production capacity”

preferences as defined in Section 4.2. The full substitutability of the preferences of intermediary

i will then follow immediately from Proposition 2.

Agent ı̂ faces the same sets of inputs, Φ, and requests, Ψ, as agent i. Agent ı̂ also has

|Φ| × |Ψ| machines, indexed by pairs of inputs and requests: machine mϕ,ψ “corresponds” to

an input–request pair (ϕ, ψ). The costs of intermediary ı̂ are as follows (to avoid confusion,

we will denote various costs of agent ı̂ by “ĉ” with various subindices, while the costs of agent

i are denoted by “c” with various subindices):
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• For input ϕ and machine mϕ,ψ “corresponding” to input ϕ and some request ψ, the

cost ĉϕ,mϕ,ψ of using input ϕ in machine mϕ,ψ is equal to cϕ,ψ—the cost of using input

ϕ to satisfy request ψ under the original cost structure of agent i.

• For any input ϕ′ 6= ϕ and any request ψ, the cost ĉϕ′,mϕ,ψ is equal to +∞.

• For request ψ and any machine mϕ,ψ “corresponding” to request ψ and some input ϕ,

the cost ĉmϕ,ψ ,ψ of using machine mϕ,ψ to satisfy request ψ is equal to 0.

• For any request ψ′ 6= ψ and any machine mϕ,ψ, the cost ĉmϕ,ψ ,ψ′ is equal to +∞.

With this construction, the preferences of agents i and ı̂ over sets of inputs and requests

are identical. Moreover, the preferences of agent ı̂ are those of “intermediary with production

capacity” and are thus fully substitutable (by Proposition 2). Therefore, the “intermediary”

preferences of agent i are also fully substitutable.

Proof of Proposition 2

Consider first an “intermediary with production capacity” who has exactly one machine at his

disposal. It is immediate that the preferences of such an intermediary are fully substitutable.

Next, consider a general “intermediary with production capacity”, i, who has a set of

machines M (with a typical element m) at his disposal and faces the set of inputs Φ (with

a typical element ϕ) and the set of potential requests Ψ (with a typical element ψ), with

costs as described in Section 4.2. We will show that the preferences of intermediary i can

be represented as a “merger” of several (specifically, |M | + |Φ| + |Ψ|) agents with fully

substitutable preferences, which by Theorem 4 will imply that the preferences of intermediary

i are fully substitutable.

Specifically, consider the following set of artificial agents. First, there are |Φ| “input

dummies”, with a typical element ϕ̂ for a dummy that corresponds to input ϕ. Second, there

are |M | “machine dummies”, with a typical element m̂ for a dummy that corresponds to
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machine m. Finally, there are |Ψ| “request dummies”, with a typical element ψ̂ for a dummy

that corresponds to request ψ.

Each input dummy ϕ̂ can only buy one trade: input ϕ. He can also form |M | trades as

a seller: one trade with every machine dummy m̂. We denote the trade between an input

dummy ϕ̂ (as the seller) and a machine dummy m̂ (as the buyer) by ωϕ,m. Likewise, each

request dummy ψ̂ can only sell one trade: request ψ. He can also form |M | trades as a buyer:

one trade with every machine dummy m̂. We denote the trade between a machine dummy m̂

(as the seller) and a request dummy ψ̂ (as the buyer) by ωm,ψ. Each machine dummy can

thus form |Φ| trades as the buyer (one with each input dummy) and |Ψ| trades as the seller

(one with each request dummy).

The preferences of the agents are as follows. Each input dummy and each request dummy

has valuation 0 if the number of trades he forms as the seller is equal to the number of trades

he forms as the buyer (this number can thus be equal to either 0 or 1), and −∞ if these

numbers are not equal. It is immediate that the preferences of input and request dummies

are fully substitutable.

The preferences of each machine dummy m̂ are as follows. If it buys no trades and sells

no trades, its valuation is 0. If it buys exactly one trade, say ωϕ,m for some ϕ, and sells

exactly one trade, say ωm,ψ for some ψ, then its valuation is −(cϕ,m + cm,ψ)—the total cost

of preparing input ϕ for request ψ using machine m in the original construction of the utility

function of agent i. In all other cases (i.e., when the machine dummy buys or sells more than

two trades, or when the number of trades it buys is not equal to the number of trades it

sells), the valuation of the machine dummy is −∞. Note that the preferences of the machine

dummy are also fully substitutable.

Consider now the “synthetic” agent ı̂ obtained as the merger of the |Φ| input dummies,

|M | machine dummies, and |Ψ| request dummies (see Section 5.2 for the details of the “merger”

operation). By Theorem 4, the preferences of agent ı̂ are fully substitutable. Moreover, the

valuation of agent ı̂ over any bundle of inputs and requests is identical to the valuation of
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agent i over that bundle. Thus, the preferences of agent i are fully substitutable.

Proof of Theorem 2

The indirect utility function for û(Φ,pΦ)
i is given by

V̂
(Φ,pΦ)
i (pΩrΦ) ≡ max

Ψ⊆ΩrΦ

max
Ξ⊆Φ

ui(Ψ ∪ Ξ) +
∑

ξ∈Ξ→i

pξ −
∑

ξ∈Ξ→i

pξ

 +
∑

ψ∈Ψ→i

pξ −
∑

ψ∈Ψ→i

pξ


= max

Ψ⊆ΩrΦ

max
Ξ⊆Φ

ui(Ψ ∪ Ξ) +
∑

λ∈Ξ→i∪Ψ→i

pλ −
∑

λ∈Ξi→∪Ψi→
pλ




= max
Λ⊆Ω

ui(Λ) +
∑

λ∈Λ→i

pλ −
∑

λ∈Λi→
pλ

.

Hence, V̂ (Φ,pΦ)
i (pΩrΦ) = Vi(pΩrΦ, pΦ). Now, Vi(p) is submodular over RΩ by Theorem 6. As a

submodular function restricted to a subspace of its domain is still submodular, V̂ (Φ,pΦ)
i (pΩrΦ)

is submodular over RΩrΦ. Hence, by Theorem 6, we see that û(Φ,pΦ)
i is fully substitutable.

Proof of Theorem 3

Fix a set of trades Φ ⊆ Ωi such that ui(Φ) 6= −∞ and a vector of prices pΦ for trades in Φ.

Let D̃i be the demand function for trades in Ω r Φ induced by ũΦ,pΦ
i . Fix two price vectors

p ∈ RΩrΦ and p′ ∈ RΩrΦ such that |D̃i(p)| = |D̃i(p′)| = 1, pω = p′ω for all ω ∈ Ωi→ r Φ, and

pω ≥ p′ω for all ω ∈ Ω→i r Φ. Let Ψ ∈ D̃i(p) be the unique demanded set from Ωi r Φ at

price vector p and Ψ′ ∈ D̃i(p′) be the unique demanded set from Ωi r Φ at price vector p′.

Note that since ui(Φ) 6= −∞, there exists a vector of prices p∗Φ for trades in Φ such that, for

all Ξ ∈ Di((p, p∗Φ)) ∪Di((p′, p∗Φ)), we have Φ ⊆ Ξ. Fix an arbitrary Ξ ∈ Di((p, p∗Φ)) and let

Ψ̃ ≡ Ξ r Φ.

Claim 1. We must have Ψ̃ = Ψ.
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Proof. Suppose the contrary. Since Ψ̃ ∪ Φ = Ξ ∈ Di((p, p∗Φ)), we must have

ui(Ξ) = ui(Ψ̃ ∪ Φ) +
∑

ψ∈Ψ̃i→

pψ −
∑

ψ∈Ψ̃→i

pψ +
∑

ϕ∈Φi→
p∗ϕ −

∑
ϕ∈Φ→i

p∗ϕ

≥ ui(Ψ ∪ Φ) +
∑

ψ∈Ψi→
pψ −

∑
ψ∈Ψ→i

pψ +
∑

ϕ∈Φi→
p∗ϕ −

∑
ϕ∈Φ→i

p∗ϕ. (11)

The inequality (11) is equivalent to

ui(Ψ̃ ∪ Φ) +
∑

ψ∈Ψ̃i→

pψ −
∑

ψ∈Ψ̃→i

pψ +
∑

ϕ∈Φi→
pϕ −

∑
ϕ∈Φ→i

pϕ

≥ ui(Ψ ∪ Φ) +
∑

ψ∈Ψi→
pψ −

∑
ψ∈Ψ→i

pψ +
∑

ϕ∈Φi→
pϕ −

∑
ϕ∈Φ→i

pϕ. (12)

However, the inequality (12) implies that Ψ̃ ∈ D̃i(p); this contradicts the assumption that

D̃i(p) = {Ψ} given that Ψ̃ 6= Ψ.

The preceding claim implies that we must have Di((p, p∗Φ)) = {Ξ} = {Ψ̃ ∪ Φ} = {Ψ ∪ Φ}.

A similar argument shows that Di((p′, p∗Φ)) = {Ψ′ ∪ Φ}. The full substitutability of ui then

implies that {ψ ∈ Ψ′→i : pψ = p′ψ} ⊆ Ψ→i and Ψi→ ⊆ Ψ′i→.

Proof of Theorem 4

We suppose, by way of contradiction, that uJ does not induce fully substitutable preferences

over trades in Ω r ΩJ . By Corollary 1 of Hatfield et al. (2013), there exist fully substitutable

preferences ũi for the agents i ∈ I r J such that no competitive equilibrium exists for the

modified economy with

1. set of agents (I r J) ∪ {J},

2. set of trades Ω r ΩJ ,

3. and valuation function for agent J given by uJ .4

4Technically, in order to apply Corollary 1 of Hatfield et al. (2013), we must have that for every pair (i, j)
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Now, we consider the original economy with

1. set of agents I,

2. set of trades Ω,

3. valuations for i ∈ I r J given by ũi, and

4. valuations for j ∈ J given by uj.

Let [Ψ; p] be a competitive equilibrium of this economy; such an equilibrium must exist by

Theorem 1 of Hatfield et al. (2013).

Claim 2. [Ψ r ΩJ ; pΩrΩJ ] is a competitive equilibrium of the modified economy.

Proof. It is immediate that [Ψ r ΩJ ]i ∈ Di(pΩrΩJ ) for all i ∈ I r J . Moreover, since Ψ is

individually-optimal for each j ∈ J in the original economy (at prices p),

uj(Ψ) +
∑

ψ∈Ψj→

pψ −
∑

ψ∈Ψ→j

pψ ≥ uj(Φ) +
∑

ϕ∈Φj→

pϕ −
∑

ϕ∈Φ→j

pϕ (13)

for every Φ ⊆ Ω. Summing (13) over all j ∈ J and simplifying, we obtain

∑
j∈J

uj(Ψ) +
∑

ψ∈Ψj→

pψ −
∑

ψ∈Ψ→j

pψ

 ≥∑
j∈J

uj(Φ) +
∑

ϕ∈Φj→

pϕ −
∑

ϕ∈Φ→j

pψ


∑
j∈J

uj(Ψ) +
∑

ψ∈[ΨrΩJ ]j→

pψ −
∑

ψ∈[ΨrΩJ ]→j

pψ

 ≥∑
j∈J

uj(Φ) +
∑

ϕ∈[ΦrΩJ ]j→

pϕ −
∑

ϕ∈[ΦrΩJ ]→j

pψ


∑
j∈J

uj(Ψ) +
∑

ψ∈[ΨrΩJ ]J→

pψ −
∑

ψ∈[ΨrΩJ ]→J

pψ ≥
∑
j∈J

uj(Φ) +
∑

ϕ∈[ΦrΩJ ]J→

pϕ −
∑

ϕ∈[ΦrΩJ ]→J

pψ.

The preceding claim shows that [Ψ r ΩJ ; pΩrΩJ ] is a competitive equilibrium of the

modified economy, contradicting the earlier conclusion that no competitive equilibrium exists

in the modified economy. Hence, we see that uJ must be fully substitutable.
of distinct agents in I, there exists a trade ω such that b(ω) = i and s(ω) = j. For any pair (i, j) of distinct
agents in I such that no such trade ω exists, we can augment the economy by adding the requisite trade ω
and, if i ∈ J , letting ūi(Ψ∪ {ω}) = ui(Ψ) (and similarly for j). It is immediate that ūi is substitutable if and
only if ui is substitutable.
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Proof of Theorem 5

The proof of this result is very close to Step 1 of the proof of Theorem 1 of Hatfield et al.

(2013). The only differences are that in the Hatfield et al. (2013) results, all trades could

be bought out, and the price for buying them out was set to a single large number that

was the same for all trades. By contrast, in Theorem 5 of the current paper we allow for

the possibility that only a subset of trades can be bought out, and that the prices at which

these trades can be bought out can be different, and need not be large. Adapting Step 1

of the proof of Theorem 1 of Hatfield et al. (2013) to the current more general setting is

straightforward, but we include the proof for completeness.

Consider the fully substitutable valuation function ui, and take any trade ϕ ∈ Ωi→ ∩ Φ.

Consider a modified valuation function uϕi :

uϕi (Ψ) = max{ui(Ψ), ui(Ψ r {ϕ})− Πϕ}.

That is, the valuation uϕi (Ψ) allows (but does not require) agent i to pay Πϕ instead of

executing one particular trade, ϕ.

Claim 3. The valuation function uϕi is fully substitutable.

Proof. We consider utility Uϕ
i and demand Dϕ

i corresponding to valuation uϕi . We show that

Dϕ
i satisfies the IFS condition (Definition 3). Fix two price vectors p and p′ such that p ≤ p′

and |Dϕ
i (p)| = |Dϕ

i (p′)| = 1. Take the unique Ψ ∈ Dϕ
i (p) and Ψ′ ∈ Dϕ

i (p′). We need to show

that

ei,ω(Ψ) ≤ ei,ω(Ψ′) for all ω ∈ Ωi such that pω = p′ω. (14)

Let price vector q coincide with p on all trades other than ϕ, and set qϕ = min{pϕ,Πϕ}.

Note that if pϕ < Πϕ, then p = q and Dϕ
i (p) = Di(p). If pϕ > Πϕ, then under utility Uϕ

i ,

agent i always wants to execute trade ϕ at price pϕ, and the only decision is whether to

“buy it out” or not at the cost Πϕ; i.e., the agent’s effective demand is the same as under
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price vector q. Thus, Dϕ
i (p) = {Ξ ∪ {ϕ} : Ξ ∈ Di(q)}. Finally, if pϕ = Πϕ, then p = q and

Dϕ
i (p) = Di(p) ∪ {Ξ ∪ {ϕ} : Ξ ∈ Di(p)}. We construct price vector q′ corresponding to p′

analogously.

Now, if pϕ ≤ p′ϕ < Πϕ, then Dϕ
i (p) = Di(p), Dϕ

i (p′) = Di(p′), and thus ei,ω(Ψ) ≤ ei,ω(Ψ′)

follows directly from IFS for demand Di.

If Πϕ ≤ pϕ ≤ p′ϕ, then (since we assumed that Dϕ
i was single-valued at p and p′) it has to

be the case that Di is single-valued at the corresponding price vectors q and q′. Let Ξ ∈ Di(q)

and Ξ′ ∈ Di(q′). Then Ψ = Ξ ∪ {ϕ}, Ψ′ = Ξ′ ∪ {ϕ}, and statement (14) follows from the IFS

condition for demand Di, because q ≤ q′.

Finally, if pϕ < Πϕ ≤ p′ϕ, then p = q, Ψ is the unique element in Di(p), and Ψ′ is equal to

Ξ′ ∪ {ϕ}, where Ξ′ is the unique element in Di(q′). Then for ω 6= ϕ, statement (14) follows

from IFS for demand Di, because p ≤ q′. For ω = ϕ, statement (14) does not need to be

checked, because pϕ < p′ϕ.

Thus, when ϕ ∈ Ωi→, the valuation function uϕi is fully substitutable. The proof for the

case when ϕ ∈ Ω→i is completely analogous.

To complete the proof of Theorem 5, it is now enough to note that valuation function

ûi(Ψ) = maxΞ⊆Ψ∩Φ
{
ui(Ψ r Ξ)−∑

ϕ∈Ξ Πϕ

}
can be obtained from the original valuation ui by

allowing agent i to “buy out” all of the trades in set Φ, one by one, and since the preceding

claim shows that each such transformation preserves substitutability (and Ωi is finite), the

valuation function ûi is substitutable as well.

Proof of Theorem 6

We first show that if the preferences of an agent i are fully substitutable, then those preferences

induce a submodular indirect utility function. It is enough to show that for any two trades
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ϕ, ψ ∈ Ωi and any prices p ∈ RΩ, phigh
ϕ > pϕ, and phigh

ψ > pψ we have that5

Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ )

≥ Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
high
ϕ , pψ). (15)

Suppose that ϕ, ψ ∈ Ω→i.6 There are three cases to consider:

Case 1: Suppose that ϕ /∈ Φ for any Φ ∈ Di(pΩr{ϕ,ψ}, pϕ, pψ). Then, by individual rationality,

ϕ /∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p
high
ϕ , pψ). Hence,

Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
high
ϕ , pψ) = 0

and so equation (15) is satisfied, as the left side of (15) must be non-negative.

Case 2: Suppose ϕ ∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p
high
ϕ , phigh

ψ ). Then, by individual rationality,

ϕ ∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, pϕ, p
high
ψ ). Hence,

Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ ) = −(pϕ − phigh
ϕ ) = phigh

ϕ − pϕ

and so equation (15) is satisfied, as the right side of (15) is (weakly) bounded from above

by phigh
ϕ − pϕ (with equality in the case that ϕ is demanded at both (pΩr{ϕ,ψ}, pϕ, pψ)

and (pΩr{ϕ,ψ}, p
high
ϕ , pψ)).

Case 3: Suppose that ϕ ∈ Φ for some Φ ∈ Di(pΩr{ϕ,ψ}, pϕ, pψ) and ϕ /∈ Φ for some

Φ ∈ Di(pΩr{ϕ,ψ}, p
high
ϕ , phigh

ψ ). In this case, as the preferences of i are fully substitutable,
5The definition of submodularity given in Definition 4 is equivalent to the pointwise definition given here;

see, e.g., Schrijver (2002).
6The other three cases—

1. ϕ ∈ Ω→i and ψ ∈ Ωi→,

2. ϕ ∈ Ω→i and ψ ∈ Ωi→, and

3. ϕ,ψ ∈ Ωi→—

are analogous.
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there exists a unique price p↑ϕ such that there exists Φ, Φ̄ ∈ Di(pΩr{ϕ,ψ}, p
↑
ϕ, p

high
ψ ) such

that ϕ ∈ Φ and ϕ /∈ Φ̄; note that pϕ ≤ p↑ϕ ≤ phigh
ϕ . Similarly, let p↓ϕ be the unique

price at which there exists Φ, Φ̄ ∈ Di(pΩr{ϕ,ψ}, p
↓
ϕ, pψ) such that ϕ ∈ Φ and ϕ /∈ Φ̄;

note that pϕ ≤ p↓ϕ ≤ phigh
ϕ . By the definition of the utility function, ϕ ∈ Φ for all

Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, p
high
ψ ) for all p̃ϕ < p↑ϕ, and ϕ /∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, p

high
ψ )

for all p̃ϕ > p↑ϕ; similarly, ϕ ∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, pψ) for all p̃ϕ < p↓ϕ, and

ϕ /∈ Φ for all Φ ∈ Di(pΩr{ϕ,ψ}, p̃ϕ, pψ) for all p̃ϕ > p↓ϕ.

Since the preferences of i are fully substitutable, p↓ϕ ≤ p↑ϕ. Hence,

Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ )

= Vi(pΩr{ϕ,ψ}, pϕ, p
high
ψ )− Vi(pΩr{ϕ,ψ}, p

↑
ϕ, p

high
ψ )

+ Vi(pΩr{ϕ,ψ}, p
↑
ϕ, p

high
ψ )− Vi(pΩr{ϕ,ψ}, p

high
ϕ , phigh

ψ )

= −pϕ + p↑ϕ − 0

≥ −pϕ + p↓ϕ − 0

= Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
↓
ϕ, pψ)

+ Vi(pΩr{ϕ,ψ}, p
↓
ϕ, pψ)− Vi(pΩr{ϕ,ψ}, p

high
ϕ , pψ)

= Vi(pΩr{ϕ,ψ}, pϕ, pψ)− Vi(pΩr{ϕ,ψ}, p
high
ϕ , pψ),

which is exactly (15).

Now, suppose that the preferences of i are not substitutable. We suppose moreover that the

preferences of i fail the first condition of Defintion 2.7 Hence, for some price vectors p, p′ ∈ RΩ

such that |Di(p)| = |Di(p′)| = 1, pω = p′ω for all ω ∈ Ωi→, and pω ≥ p′ω for all ω ∈ Ω→i, we

have that for the unique Ψ ∈ Di(p) and Ψ′ ∈ Di(p′), either {ω ∈ Ψ′→i : pω = p′ω} 6⊆ Ψ→i or

Ψi→ 6⊆ Ψ′i→. We suppose that {ω ∈ Ψ′→i : pω = p′ω} 6⊆ Ψ→i; the latter case is analogous. Let

ϕ ∈ Ψ→i r {ω ∈ Ψ′→i : pω = p′ω}. Let phigh
ϕ be a price for trade ϕ high enough such that ϕ is

7The case where the preferences of i fail the second condition of Defintion 2 is analogous.
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not demanded at either (phigh
ϕ , pΩr{ϕ}) or (phigh

ϕ , p′Ωr{ϕ}). Hence,

Vi(pϕ, p′Ωr{ϕ})− Vi(phigh
ϕ , p′Ωr{ϕ}) = 0

while

Vi(pϕ, pΩr{ϕ})− Vi(phigh
ϕ , pΩr{ϕ}) > 0.

Thus we see that Vi is not submodular.

Proof of Theorem 7

The proof is an adaptation of the proof of Theorem 1 of Sun and Yang (2009) to our setting.

As our model is more general than that of Sun and Yang (2009)—we do not impose either

monotonicity or boundedness on the valuation functions, and we do not require that the seller

values each bundle at 0 and thus sells everything that he could sell—we have to carefully

ensure that the Sun and Yang (2009) approach remains valid.

We show first that IDFS and IIFS imply the single improvement property. Fix an arbitrary

price vector p ∈ RΩ and a set of trades Ψ /∈ Di(p) such that ui(Ψ) 6= −∞. Fix a set of trades

Ξ ∈ Di(p). We focus exclusively on the trades in Ψ and Ξ by rendering all other trades that

agent i is involved in irrelevant. To this end, we first define a very high price Π,

Π ≡ max
Ω1⊆Ωi,ui(Ω1)>−∞,
Ω2⊆Ωi,ui(Ω2)>−∞

{|Ui([Ω1; p])− Ui([Ω2; p)|}+ max
ω∈Ωi
{|pω|}+ 1,

and then, starting from p, we construct a preliminary price vector p′ as follows:

p′ω =



pω ω ∈ Ψ ∪ Ξ or ω /∈ Ωi

pω + Π ω ∈ Ω→i r (Ψ ∪ Ξ)

pω − Π ω ∈ Ωi→ r (Ψ ∪ Ξ).
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Observe that Ψ /∈ Di(p′) and Ξ ∈ Di(p′). As Ψ 6= Ξ, we have to consider two cases (each with

several subcases), which taken together will show that there exists a set of trades Φ′ 6= Ψ

that satisfies conditions 2 and 3 of Definition 5 and Ui([Φ′; p]) ≥ Ui([Ψ; p]).

Case 1: Ξ r Ψ 6= ∅. Select a trade ξ1 ∈ Ξ r Ψ. Without loss of generality, assume that

agent i is the buyer of ξ1 (the case where i is the seller is completely analogous).

Starting from p′, construct a modified price vector p′′ as follows:

p′′ω =


p′ω ω ∈ Ωi r ((Ξ→i r (Ψ→i ∪ {ξ1})) ∪Ψi→) or ω /∈ Ωi

p′ω + Π ω ∈ (Ξ→i r (Ψ→i ∪ {ξ1})) ∪Ψi→.

First, since Ξ ∈ Di(p′), ξ1 ∈ Ξ, and p′ξ1 = p′′ξ1 , full substitutability (Definition A.5)

implies that there exists Ξ′′ ∈ Di(p′′) such that ξ1 ∈ Ξ′′. Second, observe that following

the price change from p′ to p′′, (Ξ′′→irΨ→i) ⊆ {ξ1} and Ψi→ ⊆ Ξ′′i→. Thus, Ξ′′→irΨ→i =

{ξ1} and Ψi→ ⊆ Ξ′′i→. We consider three subcases.

Subcase (a): Ξ′′i→ r Ψi→ 6= ∅. Let ξ2 ∈ Ξ′′i→rΨi→. Starting from p′′, construct price

vector p′′′ as follows:

p′′′ω =


p′′ω ω ∈ Ωi r ((Ξi→ r (Ψi→ ∪ {ξ2})) ∪Ψ→i) or ω /∈ Ωi

p′′ω − Π ω ∈ (Ξi→ r (Ψi→ ∪ {ξ2})) ∪Ψ→i.

First, since Ξ′′ ∈ Di(p′′), ξ2 ∈ Ξ′′, and p′′ξ2 = p′′′ξ2 , full substitutability (Defini-

tion A.6) implies that there exists Ξ′′′ ∈ Di(p′′′) such that ξ2 ∈ Ξ′′′. Second, observe

that following the price change from p′′ to p′′′, Ψ ⊆ Ξ′′′ and Ξ′′′ r Ψ ⊆ {ξ1, ξ2}.

Thus, Ψ r Ξ′′′ = ∅ and Ξ′′′ r Ψ = {ξ1, ξ2} or {ξ2}.

Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that

from the perspective of agent i the only differences from Ψ to Ξ′′′ are making one
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new sale ξ2, i.e., ei,ξ2(Ψ) > ei,ξ2(Ξ′′′) with ξ2 ∈ Ωi→ r Ψ, and (possibly) making

one new purchase ξ1, i.e. ei,ξ1(Ψ) < ei,ξ1(Ξ′′′) with ξ1 ∈ Ω→i r Ψ.

Subcase (b): Ξ′′i→ r Ψi→ = ∅ and Ψ→i r Ξ′′→i 6= ∅. Let ψ ∈ Ψ→i r Ξ′′→i. Starting

from p′′, construct price vector p′′′ as follows:

p′′′ω =


p′′ω ω ∈ Ωi r ((Ξi→ r Ψi→) ∪ (Ψ→i r {ψ})) or ω /∈ Ωi

p′′ω − Π ω ∈ (Ξi→ r Ψi→) ∪ (Ψ→i r {ψ}).

First, since Ξ′′ ∈ Di(p′′), ψ /∈ Ξ′′, and p′′ψ = p′′′ψ , by full substitutability (Defini-

tion A.6) implies that there exists Ξ′′′ ∈ Di(p′′′) such that ψ /∈ Ξ′′′. Second, observe

that following the price change from p′′ to p′′′, Ψ r Ξ′′′ ⊆ {ψ} and Ξ′′′ r Ψ ⊆ {ξ1}.

Thus, Ψ r Ξ′′′ = {ψ} and Ξ′′′ r Ψ = {ξ1} or ∅.

Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that

from agent i’s perspective the only differences from Ψ to Ξ′′′ are canceling one

purchase ψ, i.e., ei,ψ(Ψ) > ei,ψ(Ξ′′′) with ψ ∈ Ψ→i, and (possibly) making one new

purchase ξ1, i.e., ei,ξ1(Ψ) < ei,ξ1(Ξ′′′) with ξ1 ∈ Ω→i r Ψ.

Subcase (c): Ξ′′ = Ψ ∪ {ξ1}. Let p′′′ = p′′ and Ξ′′′ = Ξ′′. Since Ξ′′′ ∈ Di(p′′′), we have

Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that from agent i’s perspective

the only difference from Ψ to Ξ′′′ is making a new purchase ξ1, i.e., ei,ξ1(Ψ) <

ei,ξ1(Ξ′′′) with ξ1 ∈ Ω→i r Ψ.

Case 2: Ξ r Ψ = ∅ and Ψ r Ξ 6= ∅. Select a trade ψ1 ∈ ΨrΞ. Without loss of generality,

assume that agent i is a buyer in ψ1 (the case where i is a seller is completely analogous).

Starting from p′, construct price vector p′′ as follows:

p′′ω =


p′ω ω ∈ Ωi r (Ψ→i r {ψ1}) or ω /∈ Ωi

p′ω − Π ω ∈ Ψ→i r {ψ1}.
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First, since Ξ ∈ Di(p′), ψ1 /∈ Ξ, and p′ψ1 = p′′ψ1 , full substitutability (Definition A.6)

implies that there exists Ξ′′ ∈ Di(p′′) such that ψ1 /∈ Ξ′′. Second, observe that following

the price change from p′ to p′′, Ξ′′ ⊆ Ψ and Ψ→irΞ′′→i ⊆ {ψ1}. Thus, Ψ→irΞ′′→i = {ψ1}

and Ξ′′ ⊆ Ψ. We consider two subcases.

Subcase (a): Ψi→ r Ξ′′i→ 6= ∅. Let ψ2 ∈ Ψi→rΞ′′i→. Starting from p′′, construct price

vector p′′′ as follows:

p′′′ω =


p′′ω ω ∈ Ωi r (Ψi→ r {ψ2}) or ω /∈ Ωi

p′′ω + Π ω ∈ Ψi→ r {ψ2}.

First, since Ξ′′ ∈ Di(p′′), ψ2 /∈ Ξ′′, and p′′ψ2 = p′′′ψ2 , full substitutability (definition

A.5) implies that there exists Ξ′′′ ∈ Di(p′′′) such that ψ2 /∈ Ξ′′′. Second, observe

that following the price change from p′′ to p′′′, Ξ′′′ ⊆ Ψ and Ψ r Ξ′′′ ⊆ {ψ1, ψ2}.

Thus, Ξ′′′ r Ψ = ∅ and Ψ r Ξ′′′ = {ψ1, ψ2} or {ψ2}.

Since Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that

from agent i’s perspective the only differences from Ψ to Ξ′′′ are canceling one

sale ψ2, i.e., ei,ψ2(Ψ) < ei,ψ2(Ξ′′′) with ψ1 ∈ Ωi→ r Ψ, and (possibly) canceling one

purchase ψ1, i.e., ei,ψ1(Ψ) > ei,ψ1(Ξ′′′) with ψ1 ∈ Ψ→i.

Subcase (b): Ξ′′ = Ψ r {ψ1}. In this subcase, let p′′′ = p′′ and Ξ′′′ = Ξ′′. Since

Ξ′′′ ∈ Di(p′′′), we have Ui([Ψ, p′′′]) ≤ Ui([Ξ′′′, p′′′]). Furthermore, observe that from

the perspective of agent i, the only difference from Ψ to Ξ′′′ is canceling purchase

ψ1, i.e., ei,ψ1(Ψ) < ei,ψ1(Ξ′′′) with ψ1 ∈ Ω→i r Ψ.

Taking together all the final statements from each subcase of Cases 1 and 2, if we take

Φ′ ≡ Ξ′′′, we obtain that we always have a price vector p′′′ and the sets Ψ and Φ′ that

satisfy conditions (2) and (3) of Definition 5. Moreover, since we always have Φ ∈ Di(p′′′),

Ui([Φ′, p′′′]) ≥ Ui([Ψ, p′′′]).
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Next, we show that Ui([Φ′, p′′′])− Ui([Ψ, p′′′]) ≥ 0 implies Ui([Φ′, p]) ≥ Ui([Ψ, p]). First,

observe that when taking the difference the prices of all trades ω ∈ Φ′ ∩Ψ cancel each other

out. Thus, replacing the prices p′′′ω with pω for all trades ω ∈ Φ′ ∩ Ψ leaves the difference

unchanged. Second, observe that in all previous subcases, the construction of p′′′ implies

that for all ω ∈ ((Ψ r Φ′) ∪ (Φ′ r Ψ)), pω = p′′′ω . Combining the two observations above,

Ui([Φ′, p′′′])− Ui([Ψ, p′′′]) = Ui([Φ′, p])− Ui([Ψ, p]), and therefore Ui([Φ′, p]) ≥ Ui([Ψ, p]).

We now show that there exists a set of trades Φ that satisfies all conditions of Definition 5.

Since Ψ /∈ Di(p), Vi(p) > Ui([Ψ; p]). Since i’s utility is continuous in prices, there exists ε > 0

such that Vi(q) > Ui([Ψ; q]) where q is defined as follows:

qω =


pω + ε ω ∈ (Ω→i r Ψ→i) ∪Ψi→

pω − ε ω ∈ (Ωi→ r Ψi→) ∪Ψ→i.

Our arguments above imply that there exists a set of trades Φ 6= Ψ such that Ui([Φ; q]) ≥

Ui([Ψ; q]). Using the construction of q, we obtain Ui([Φ; p]) − Ui([Ψ; p]) = Ui([Φ; q]) −

Ui([Ψ; q]) + ε|(Ψ r Φ) ∪ (Φ r Ψ)| > Ui([Φ; q])− Ui([Ψ; q]) ≥ 0. Thus, Ui([Φ; p]) > Ui([Ψ; p]).

This completes the proof that IDFS and IIFS imply the single improvement property.

We now show that the single improvement property implies full substitutability DCFS.

More specifically, we will establish that single improvement implies the first condition of

Definition A.4. The proof that the second condition of Definition A.4 is also satisfied uses a

completely analogous argument.

Let p ∈ RΩ and Ψ ∈ Di(p) be arbitrary. It is sufficient to establish that for any p′ ∈ RΩ

such that p′ψ > pψ for some ψ ∈ Ω→i and p′ω = pω for all ω ∈ Ω \ {ψ}, there exists a set of

trades Ψ′ ∈ Di(p′) that satisfies the first condition of Definition A.4.

Fix one p′ ∈ RΩ that satisfies the conditions mentioned in the previous paragraph and let

ψ ∈ Ω→i be the one trade for which p′ψ > pψ. Note that if either ψ /∈ Ψ or Ψ ∈ Di(p′), there

is nothing to show. From now on, assume that ψ ∈ Ψ and Ψ /∈ Di(p′).
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For any real number ε > 0 define a price vector pε ∈ RΩ by setting pεψ = pψ + ε and

pεω = pω for all ω ∈ Ω \ {ψ}. Let ∆ ≡ max{ε : Ψ ∈ Di(pε)}. Note that ∆ is well defined since

i’s utility function is continuous in prices. Furthermore, given that Ψ /∈ Di(p′), we must have

∆ < p′ψ − pψ.

Next, for any integer n, define a price vector pn ∈ RΩ by setting pnψ = pψ + ∆ + 1
n
and

pnω = pω for all ω ∈ Ω \ {ψ}. By the definition of ∆ we must have Ψ /∈ Di(pn) for all n > 0.

By the single improvement property, this implies that for all n > 0, there exists a set of

trades Φn such that the following conditions are satisfied:

1. Ui([Ψ, pn]) < Ui([Φn, pn]),

2. there exists at most one trade ω such that ei,ω(Ψ) < ei,ω(Φn), and

3. there exists at most one trade ω such that ei,ω(Ψ) > ei,ω(Φn).

Note that we must have ψ /∈ Φn for all n ≥ 1. This follows since for any n ≥ 1 and any set

of trades Φ such that ψ ∈ Φ, Ui([Φ; pn]) = Ui([Φ; p])−∆− 1
n
≤ Ui([Ψ; p])−∆− 1

n
= Ui([Ψ; pn])

given that Ψ ∈ Di(p).

Conditions 2 and 3 imply that for all n > 0, we must have {ω ∈ Ψ→i : p′ω = pω} = {ω ∈

Ψ→i : pnω = pω} ⊆ Φn
→i and Φn

i→ ⊆ Ψi→.

Since the set of trades is finite, it is without loss of generality to assume that there is a set

of trades Φ∗ ∈ Ωi and an integer n̄ such that Φn = Φ∗ for all n ≥ n̄. Since i’s utility function

is continuous with respect to prices and pn → p∆, we must have Ui([Φ∗; p∆]) ≥ Ui([Ψ; p∆]).

Since Ψ ∈ Di(p∆), this implies Φ∗ ∈ Di(p∆). Since ∆ < p′ψ − pψ and Vi is decreasing in the

prices of trades for which i is a buyer, we must have Vi(p∆) ≥ Vi(p′). Since ψ /∈ Φ∗, we have

that Ui([Φ∗; p′]) = Ui([Φ∗; p∆]) = Vi(p∆). Hence, Φ∗ ∈ Di(p′) and setting Ψ′ ≡ Φ∗ yields a set

that satisfies the first condition of Definition A.4.
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Proof of Theorem 8

The proof is an adaptation of the proof of Theorem 1 of Gul and Stacchetti (1999). Since we

impose neither monotonicity nor boundedness conditions on valuation functions, there are a

number of details needed in order to check that Gul and Stacchetti (1999) proof strategy

works in our setting.

Throughout the proof, for any price vector p ∈ RΩ, we denote by D̃i(p) the sets of objects

that correspond to the optimal sets of trades in Di(p).

We show first that the single improvement property in object-language implies the no

complementarities condition. Let p be an arbitrary price vector and Φ,Ψ ∈ D̃i(p) be arbitrary.

Let Ψ̄ ⊆ ΨrΦ be arbitrary. Let Ξ ∈ D̃i(p) be a set of objects such that Ξ ⊆ Φ ∪Ψ and

Ψr Ψ̄ ⊆ Ξ, and such that there is no Ξ′ ∈ D̃i(p) for which Ξ′ ⊆ Φ ∪Ψ, Ψ \ Ψ̄ ⊆ Ξ′, and

|Ξ′ ∩ Ψ̄| < |Ξ ∩ Ψ̄|. If Ξ ∩ Ψ̄ = ∅, we are done. If not, let Π be a very large number8 and

define p(ε) by setting pt(ω)(ε) = Π if ω ∈ Ω→ir (Φ∪Ψ), pt(ω)(ε) = −Π if ω ∈ Ωi→r (Φ∪Ψ),

pt(ω)(ε) = pt(ω) if ω ∈ (Φ ∪Ψ) r Ψ̄, and pt(ω)(ε) = pt(ω) + ε if ω ∈ Ψ̄. Note that for all

ε > 0 we must have Φ ∈ D̃i(p(ε)) (since Ψ̄ ⊆ Ψ \ Φ) and Ui([Φ; p(ε)]) > Ui([Ξ; p(ε)]).

Since Ξ ∈ D̃i(p), we must have ui(Ξ) 6= −∞. Hence, we can apply the single improvement

property (in object-language) to infer that there must exist a set of objects Ξ′ such that

|Ξ′ \ Ξ| ≤ 1, |Ξ \ Ξ′| ≤ 1, and Ui([Ξ′; p(ε)]) > Ui([Ξ; p(ε)]). Given the definition of p(ε)

and Π, we must have Ξ′ ⊆ Φ ∪Ψ. Since Ui([Ξ′; p(ε)]) > Ui([Ξ; p(ε)]) holds for arbitrarily

small values of ε, we must have Ξ′ ∈ D̃i(p). But Ui([Ξ′; p(ε)]) > Ui([Ξ; p(ε)]) is equivalent to

Ui([Ξ′; p])− |Ξ′ ∩ Ψ̄|ε > Ui([Ξ; p])− |Ξ ∩ Ψ̄|ε. Given that Ξ,Ξ′ ∈ D̃i(p), the last inequality

is equivalent to |Ξ′ ∩ Ψ̄| < |Ξ ∩ Ψ̄| and we thus obtain a contradiction to the definition of

Ξ. Hence, it has to be the case that Ξ ∩ Ψ̄ = ∅ and this completes the proof that single

improvement implies no complementarities.
8For instance, let

∆ = max
Ω1⊂Ωi,Ω2⊂Ωi,ui(Ω1)>−∞,ui(Ω2)>−∞

|Ui([Ω1; p])− Ui([Ω2; p])|,

and Π = 1 + ∆ + maxω∈Ωi
|pω|.
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Next, we show that the generalized no complementarities condition implies object-language

full substitutability. Let p, p′ be two price vectors such that p ≤ p′. Let Ψ ∈ D̃i(p) be

arbitrary.9 Let Ω̃i = {ω ∈ Ωi : pt(ω) < p′t(ω)}. The proof will proceed by induction

on |Ω̃i|. Consider first the case of |Ω̃i| = 1 and let Ω̃i = {ω}. Clearly, if ω /∈ Ψ or

Ψ ∈ D̃i(p′), there is nothing to show. So suppose that ω /∈ Ψ and that Ψ /∈ D̃i(p′).

For any ε ≥ 0, define a price vector p(ε) by setting pt(ϕ)(ε) = pt(ϕ) for all ϕ 6= ω, and

pt(ω)(ε) = pt(ω) + ε. Let ε̄ = max{ε : Ψ ∈ D̃i(p(ε))} and note that ε̄ < p′t(ω) − pt(ω)

given that Ψ /∈ D̃i(p′). Consider some ε > ε̄ and fix a set of objects Φ ∈ D̃i(p(ε)). It is

easy to see that ω /∈ Φ and that Φ ∈ D̃i(p(ε̄)). By the generalized no complementarities

condition, there must exist a set of objects Ξ ⊆ Φ such that Ψ′ := Ψ \ {ω} ∪ Ξ ∈ D̃i(p(ε̄)).

Clearly, we must also have Ψ′ ∈ D̃i(p′) and this completes the proof in case of |Ω̃i| = 1.

Now suppose that the statement has already been established for all pairs of price vectors

p, p′ such that |Ω̃i| ≤ K for some K ≥ 1. Consider two price vectors p, p′ such that

|Ω̃i| = K + 1. Fix a set of objects Ψ ∈ D̃i(p). Let ω ∈ Ω̃i be arbitrary and consider a

price vector p′′ such that p′′t(ω) = pt(ω) and p′′t(ϕ) = p′t(ϕ) for all ϕ 6= ω. By the inductive

assumption, there is a set Ψ′′ ∈ D̃i(p′′) such that {ϕ ∈ Ψ : p′′t(ϕ) = pt(ϕ)} ⊆ Ψ′′. Note that

{ϕ ∈ Ψ : p′t(ϕ) = pt(ϕ)} = {ϕ ∈ Ψ : p′′t(ϕ) = pt(ϕ)} \ {ω}. Applying the inductive assumption

one more time, there has to be a set Ψ′ ∈ D̃i(p′) such that Ψ′′ \ {ω} ⊆ Ψ′. Combining this

with the previous arguments, we obtain {ϕ ∈ Ψ : p′t(ϕ) = pt(ϕ)} ⊆ Ψ′. This completes the

proof.

Proof of Theorem 9

As Ω is finite and non-empty, for each agent i the domain of ui is bounded and non-empty.

Hence, by Part (b) of Theorem 7 of Murota and Tamura (2003), we see that ui is M \-concave

over objects if and only if the preferences of i have the single-improvement property.10 The
9There is no need to rule out the possibility of several optimal bundles of objects in this proof.

10Strictly speaking, Theorem 7(b) shows the equivalence of M \-convexity and the (M\-SI) property of
a function f . It is, however, immediate that this result implies the equivalence of M \-concavity and the
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result then follows from Theorem 7.

Proof of Theorem 10

We assume throughout that Ω = Ωi (and so X = Xi); this is without loss of generality as all

of the analysis here considers only the sets of contracts demanded by i and, for any sets of

contracts Y and Z such that Yi = Zi, we have that Y ∗ ∈ Ci(Y ) if and only if Y ∗ ∈ Ci(Z).

Step 1: We show first that full substitutability implies monotone–substitutability for oppor-

tunity sets such that the choice correspondence is single-valued. That is, we will show

for all finite sets of contracts Y and Z such that |Ci(Y )| = |Ci(Z)| = 1, Yi→ = Zi→,

and Y→i ⊆ Z→i, for the unique Y ∗ ∈ Ci(Y ) and the unique Z∗ ∈ Ci(Z), we have

|Z∗→i| − |Y ∗→i| ≥ |Z∗i→| − |Y ∗i→|.

Fix a fully substitutable valuation function ui for agent i. Consider two finite sets

of contracts Y and Z such that |Ci(Y )| = |Ci(Z)| = 1, Yi→ = Zi→, and Y→i ⊆ Z→i.

Assume that for any ω ∈ Ωi→, if (ω, pω) ∈ Yi→ and (ω, p′ω) ∈ Yi→, then pω = p′ω; this is

without loss of generality, because for a given trade ω ∈ Ωi→, agent i, as a seller, will

only choose a contract with the highest price available for that trade, and thus we can

disregard all other contracts involving that trade.

Let Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z). Define a modified valuation ũi on τ(Zi) for agent i

by setting, for each Ψ ⊆ τ(Zi),

ũi(Ψ) = ui(Ψ→i ∪ (τ(Z) r Ψ)i→).

For all feasible W ⊆ Z, let

Ũi(W ) = ũi(τ(W )) +
∑

(ω,pω)∈(ZrW )i→

pω −
∑

(ω,pω)∈W→i

pω,

single-improvement property for a function g = −f .
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and let C̃i denote the choice correspondence over Z associated with Ũi. By construction,

ũi(Ψ) = ui(õi(Ψ)), (16)

where here the object operator õ is defined with respect to the underlying set of trades

τ(Z):

õi(Ψ) = {o(ω) : ω ∈ Ψ→i} ∪ {o(ω) : ω ∈ τ(Z) r Ψi→}.

As the preferences of i are fully substitutable, the restriction of those preferences to

τ(Z) is fully substitutable, as well.11 Thus, the restriction of i’s preferences to τ(Z) is

object-language fully substitutable and so ũi satisfies the gross substitutability condition

of Kelso and Crawford (1982) over objects.

Now, we must have C̃i(Y ) = {Y ∗→i ∪ (Z r Y ∗)i→} and C̃i(Z) = {Z∗→i ∪ (Z r Z∗)i→}.

As we assume quasilinearity, the Law of Aggregate Demand for two-sided markets

applies to C̃i (by Theorem 7 of Hatfield and Milgrom (2005)). As Y ⊆ Z, this

implies that |Z∗→i ∪ (Z r Z∗)i→| ≥ |Y ∗→i ∪ (Z r Y ∗)i→|; this inequality is equivalent to

|Z∗→i| − |Z∗i→| ≥ |Y ∗→i| − |Y ∗i→|, which is precisely the Law of Aggregate Demand. We

also immediately have that Yi→ r Y ∗→i ⊆ Zi→ r Z∗→i and Y ∗i→ ⊆ Z∗i→, as the preferences

of i are fully substitutable. Thus the preferences of i satisfy the requirements of Part 1

of Definition 11 when the choice correspondence is single-valued.

The proof that the preferences of i satisfy the requirements of Part 2 of Definition 11

when the choice correspondence is single-valued is analogous. Thus, combining the

preceding results, we obtain that full substitutability implies monotone–substitutability

for opportunity sets such that the choice correspondence is single-valued.

Step 2: We now use Step 1 to show that full substitutability implies monotone–substitutability.
11To see the full substitutability of Ũi, note that the full substitutability of the restriction of Ui to any

subset of X follows immediately from the fact that the preferences of i satisfy CFS.
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For this step, let

û(Ψ;Y ) ≡ ui(Ψ)−
∑

ψ∈Ψ→i

inf{pψ : (ψ, pψ) ∈ Y }+
∑

ψ∈Ψi→
sup{pψ : (ψ, pψ) ∈ Y },

where we take inf ∅ =∞ and sup∅ = −∞; that is, û(Ψ;Y ) is the utility that i obtains

from the set of trades Ψ and both paying, for each trade in Ψ→i, the lowest price

corresponding to a contract in Y and receiving, for each trade in Ψi→, the highest price

corresponding to a contract in Y .

We also extend the operator τ to sets of sets of contracts, so that τ(Y) = ∪Y ∈Y{τ(Y )}

for any Y ⊆ ℘(X).

Finally, it is helpful to define an operator which, given a set of available contracts W ,

makes each trade in τ(W ′) slightly more appealing to i relative to W ′ and each trade

not in τ(W ′) slightly less appealing to i relative to W ′. Let

r(W ;W ′, ε) ≡ {(ω, pω − ε) ∈ X : (ω, pω) ∈ W ′
→i}

∪ {(ω, pω + ε) ∈ X : (ω, pω) ∈ [W rW ′]→i}

∪ {(ω, pω + ε) ∈ X : (ω, pω) ∈ W ′
i→}

∪ {(ω, pω − ε) ∈ X : (ω, pω) ∈ [W rW ′]i→}.

The r function here allows us to perturb sets of contracts so as to obtain unique choices,

similar to the methods used to prove Lemma 1.

Observation 1. For all sets of contracts W,Y, Z ⊆ X such that Y ⊆ Z, we have that

r(Y ;W, ε) ⊆ r(Z;W, ε) for all ε > 0.

Now, we consider two finite sets of contracts Y and Z such that Yi→ = Zi→ and Y→i ⊆

Z→i. Fix an arbitrary Y ∗ ∈ Ci(Y ); we need to show that there exists a set Z∗ ∈ Ci(Z)

that satisfies the requirements of Part 1 of Definition 11. Let Ẑ∗ ∈ Ci(r(Z;Y ∗, ε)).
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We first show five intermediate results on the effects of our price perturbations, where

we ε > 0 to be sufficiently small and δ > 0 to be sufficiently small given ε.

Fact 1: Ci(r(Y ;Y ∗, ε)) = {r(Y ∗;Y ∗, ε)}. We have that, for any feasible W ⊆ Y such

that W 6= Y ∗,12,13

Ui(r(Y ∗;Y ∗, ε))− Ui(r(W ;Y ∗, ε)) = Ui(Y ∗)− Ui(W ) + |Y ∗ 	W |ε

≥ |Y ∗ 	W |ε

> 0,

where the equality follows from the definition of r, the first inequality follows from

the fact that Y ∗ is optimal at Y (i.e., Y ∗ ∈ Ci(Y )) and the second inequality follows

from the fact that W 6= Y ∗. Thus, we see that Ci(r(Y ;Y ∗, ε)) = {r(Y ∗;Y ∗, ε)},

as desired.

Fact 2: τ(Ci(r(r(Y ;Y ∗, ε); Ẑ∗, δ))) ⊆ τ(Ci(r(Y ;Y ∗, ε))). Consider an arbitrary Φ ∈

τ(Ci(r(Y ;Y ∗, ε))) and an arbitrary Ξ /∈ τ(Ci(r(Y ;Y ∗, ε))). For ε small enough,

we have that,

û(Φ; r(r(Y ;Y ∗, ε); Ẑ∗, δ))− û(Ξ; r(r(Y ;Y ∗, ε); Ẑ∗, δ))

≥ û(Φ; r(Y ;Y ∗, ε))− û(Ξ; r(Y ;Y ∗, ε))− |Φ	 Ξ|δ

> 0,

where the first inequality follows from the definition of r and the second inequality

follows as Φ is associated with an optimal set of contracts at r(Y ;Y ∗, ε), Ξ is not

associated with an optimal set of contracts at r(Y ;Y ∗, ε), and δ is sufficiently

small. Thus, Ξ /∈ τ(Ci(r(r(Y ;Y ∗, ε); Ẑ∗, δ))) and so τ(Ci(r(r(Y ;Y ∗, ε); Ẑ∗, δ))) ⊆
12Note that there is a natural one-to-one correspondence between (feasible) subsets of Y and (feasible)

subsets of r(Y ;Y ∗, ε).
13Here, we use 	 to denote the symmetric difference between two sets, i.e.,W	W ′ = (WrW ′)∪(WrW ′).
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τ(Ci(r(Y ;Y ∗, ε))).

Fact 3: τ(Ci(r(Z;Y ∗, ε))) ⊆ τ(Ci(Z)). Consider an arbitrary Φ ∈ τ(Ci(Z)) and an

arbitrary Ξ /∈ τ(Ci(Z)). For ε small enough, we have that

û(Φ; r(Z;Y ∗, ε))− û(Ξ; r(Z;Y ∗, ε));Y ∗, ε) ≥ û(Φ;Z)− û(Ξ;Z)− |Φ	 Ξ|ε

> 0,

where the first inequality follows from the definition of r and the second inequality

follows as Φ is associated with an optimal set of contracts at Z, Ξ is not associated

with an optimal set of contracts at Z, and ε is sufficiently small. Thus, Ξ /∈

τ(Ci(r(Z;Y ∗, ε))) and so τ(Ci(r(Z;Y ∗, ε))) ⊆ τ(Ci(Z)).

Fact 4: τ(Ci(r(r(Z;Y ∗, ε)); Ẑ∗, δ))) ⊆ τ(Ci(r(Z;Y ∗, ε))). Consider an arbitrary Φ ∈

τ(Ci(r(Z;Y ∗, ε))) and an arbitrary Ξ /∈ τ(Ci(r(Z;Y ∗, ε))). For δ small enough,

we have that

û(Φ; r(r(Z;Y ∗, ε); Ẑ∗, δ))− û(Ξ; r(r(Z;Y ∗, ε); Ẑ∗, δ))

≥ û(Φ; r(Z;Y ∗, ε))− û(Ξ; r(Z;Y ∗, ε))− |Φ	 Ξ|δ

> 0,

where the first inequality follows from the definition of r and the second inequal-

ity follows as Φ is associated with an optimal set of contracts at r(Z;Y ∗, ε),

Ξ is not associated with an optimal set of contracts at r(Z;Y ∗, ε), and δ is

sufficiently small. Thus, Ξ /∈ τ(Ci(r(r(Z;Y ∗, ε); Ẑ∗, δ))) and so we have that

τ(Ci(r(r(Z;Y ∗, ε); Ẑ∗, δ))) ⊆ τ(Ci(r(Z;Y ∗, ε))).

Fact 5: Ci(r(r(Z;Y ∗, ε); Ẑ∗, δ)) = {r(Ẑ∗; Ẑ∗, δ)}. We have that for any feasible W ⊆
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r(Z;Y ∗, ε) such that W 6= Ẑ∗,14

Ui(r(Ẑ∗; Ẑ∗, δ))− Ui(r(W ; Ẑ∗, δ)) = Ui(Ẑ∗)− Ui(W ) + |Ẑ∗ 	W |δ

≥ |Ẑ∗ 	W |δ

> 0

where the equality follows from the definition of r, the first inequality follows from

the fact that Ẑ∗ is optimal at r(Z;Y ∗, ε), i.e., Ẑ∗ ∈ Ci(r(Z;Y ∗, ε)), and the last

inequality follows as W 6= Ẑ∗. Thus Ci(r(r(Z;Y ∗, ε); Ẑ∗, δ)) = {r(Ẑ∗; Ẑ∗, δ)}.

Combining Facts 1 and 2 shows that there is a unique element of τ(Ci(r(r(Y ;Y ∗, ε); Ẑ∗, δ)))

and, since r(r(Y ;Y ∗, ε); Ẑ∗, δ) is a finite set, there must therefore exist a unique

Ỹ ∗ ∈ Ci(r(r(Y ;Y ∗, ε); Ẑ∗, δ)).

Fact 5 shows that Z̃∗ ≡ r(Ẑ∗; Ẑ∗, δ) is the unique element of Ci(r(r(Z;Y ∗, ε); Ẑ∗, δ)).

Thus, as [r(r(Y ;Y ∗, ε); Ẑ∗, δ)]→i ⊆ [r(r(Z;Y ∗, ε); Ẑ∗, δ)]→i by Observation 1 (as Y→i ⊆

Z→i) and [r(r(Y ;Y ∗, ε); Ẑ∗, δ)]i→ = [r(r(Z;Y ∗, ε); Ẑ∗, δ)]i→ (as Yi→ = Zi→), Step 1 of

the proof implies that

|Z̃∗→i| − |Z̃∗i→| ≥ |Ỹ ∗→i| − |Ỹ ∗i→| (17a)

[r(r(Y ;Y ∗, ε); Ẑ∗, δ)]→i r Ỹ ∗→i ⊆ [r(r(Z;Y ∗, ε); Ẑ∗, δ)]→i r Z̃∗→i (17b)

Ỹ ∗i→ ⊆ Z̃∗i→. (17c)

Each contract (ω, pω) in Ỹ ∗→i has the property that pω is the minimal price associated

with ω among all prices associated with ω by some contract in r(r(Y ;Y ∗, ε); Ẑ∗, δ) as

Ỹ ∗ is optimal at r(r(Y ;Y ∗, ε); Ẑ∗, δ). Similarly, each contract (ω, pω) in Z̃∗→i has the
14Note that there is a natural one-to-one correspondence between (feasible) subsets of Z, (feasible) subsets

of r(Z;Y ∗, ε), and (feasible) subsets of r(r(Z;Y ∗, ε); Ẑ∗, δ).
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property that pω is the minimal price associated with ω among all prices associated

with ω by some contract in r(r(Z;Y ∗, ε); Ẑ∗, δ) as Z̃∗ is optimal at r(r(Z;Y ∗, ε); Ẑ∗, δ).

Moreover, each contract (ω, pω) ∈ Ỹ ∗i→ has the property that pω is the maximal price

associated with ω among all contracts associated with ω in r(r(Y ;Y ∗, ε); Ẑ∗, δ), as Ỹ ∗ is

optimal at r(r(Y ;Y ∗, ε); Ẑ∗, δ). Similarly, each contract (ω, pω) ∈ Z̃∗i→ has the property

that pω is the maximal price associated with ω among all contracts associated with ω

in r(r(Z;Y ∗, ε); Ẑ∗, δ), as Z̃∗ is optimal at r(r(Z;Y ∗, ε); Ẑ∗, δ). We thus rewrite (17b)

and (17c) (while maintaining (17a)) as

|Z̃∗→i| − |Z̃∗i→| ≥ |Ỹ ∗→i| − |Ỹ ∗i→| (18a)



(ω, pω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ) :

ω /∈ τ(Ỹ ∗→i) or

∃(ω, p̄ω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ)

such that p̄ω < pω




→i

⊆





(ω, pω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ) :

ω /∈ τ(Z̃∗→i) or

∃(ω, p̄ω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ)

such that p̄ω < pω




→i

(18b)





(ω, pω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ) :

ω ∈ τ(Ỹ ∗→i) and

@(ω, p̄ω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ)

such that p̄ω < pω




→i

⊆





(ω, pω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ) :

ω ∈ τ(Z̃∗i→) and

@(ω, p̄ω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ)

such that p̄ω > pω




i→

. (18c)

Combining Facts 1 and 2 yields that τ(Y ∗) = τ(Ỹ ∗), implying that |Y ∗→i| = |Ỹ ∗→i| and
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|Y ∗i→| = |Ỹ ∗i→|, and so we have

|Z̃∗→i| − |Z̃∗i→| ≥ |Y ∗→i| − |Y ∗i→| (19a)



(ω, pω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ) :

ω /∈ τ(Y ∗→i) or

∃(ω, p̄ω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ)

such that p̄ω < pω




→i

⊆





(ω, pω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ) :

ω /∈ τ(Z̃∗→i) or

∃(ω, p̄ω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ)

such that p̄ω < pω




→i

(19b)





(ω, pω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ) :

ω ∈ τ(Y ∗i→) and

@(ω, p̄ω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ)

such that p̄ω > pω




i→

⊆





(ω, pω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ) :

ω ∈ τ(Z̃∗i→) and

@(ω, p̄ω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ)

such that p̄ω > pω




i→

. (19c)

Similarly, combining Facts 3–5 yields that there exists Z∗ ∈ Ci(Z) such that τ(Z∗) =

τ(Z̃∗), implying |Z∗→i| = |Z̃∗→i| and |Z∗i→| = |Z̃∗i→|, and so we have

|Z∗→i| − |Z∗i→| ≥ |Y ∗→i| − |Y ∗i→| (20a)



(ω, pω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ) :

ω /∈ τ(Y ∗→i) or

∃(ω, p̄ω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ)

such that p̄ω < pω




→i

⊆





(ω, pω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ) :

ω /∈ τ(Z∗→i) or

∃(ω, p̄ω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ)

such that p̄ω < pω




→i

(20b)





(ω, pω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ) :

ω ∈ τ(Y ∗i→) and

@(ω, p̄ω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ)

such that p̄ω > pω




i→

⊆





(ω, pω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ) :

ω ∈ τ(Z∗i→) and

@(ω, p̄ω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ)

such that p̄ω > pω




i→

. (20c)

We have, by (20c) that, if ω ∈ τ(Y ∗i→), then ω ∈ τ(Z∗i→); moreover, since Yi→ = Zi→ by

assumption, the set of prices corresponding to a given ω ∈ Ωi→ is the same in Y and Z.
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We thus rewrite (20c) (while maintaining (20a) and (20b)) as

|Z∗→i| − |Z∗i→| ≥ |Y ∗→i| − |Y ∗i→| (21a)



(ω, pω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ) :

ω /∈ τ(Y ∗→i) or

∃(ω, p̄ω) ∈ r(r(Y ;Y ∗, ε); Ẑ∗, δ)

such that p̄ω < pω




→i

⊆





(ω, pω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ) :

ω /∈ τ(Z∗→i) or

∃(ω, p̄ω) ∈ r(r(Z;Y ∗, ε); Ẑ∗, δ)

such that p̄ω < pω




→i

(21b)





(ω, pω) ∈ Y :

ω ∈ τ(Y ∗i→) and

@(ω, p̄ω) ∈ Y

such that p̄ω > pω




i→

⊆





(ω, pω) ∈ Z :

ω ∈ τ(Z∗i→) and

@(ω, p̄ω) ∈ Z

such that p̄ω > pω




i→

. (21c)

We have, by (21b) that, if ω /∈ τ(Y ∗→i), then ω /∈ τ(Z∗→i); moreover, since Y→i ⊆ Z→i

by assumption, the set of prices available for a given ω ∈ Ω→i is larger in Y than in Z.

We thus rewrite (21b) (while maintaining (21a) and (21c)) as

|Z∗→i| − |Z∗i→| ≥ |Y ∗→i| − |Y ∗i→| (22a)



(ω, pω) ∈ Y :

ω /∈ τ(Y ∗→i) or

∃(ω, p̄ω) ∈ Y

such that p̄ω < pω




→i

⊆





(ω, pω) ∈ Z :

ω /∈ τ(Z∗→i) or

∃(ω, p̄ω) ∈ Z

such that p̄ω < pω




→i

(22b)





(ω, pω) ∈ Y :

ω ∈ τ(Y ∗i→) and

@(ω, p̄ω) ∈ Y

such that p̄ω > pω




i→

⊆





(ω, pω) ∈ Z :

ω ∈ τ(Z∗i→) and

@(ω, p̄ω) ∈ Z

such that p̄ω > pω




i→

. (22c)
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We rewrite this expression as

|Z∗→i| − |Z∗i→| ≥ |Y ∗→i| − |Y ∗i→|

[Y r Y ∗]→i ⊆ [Z r Z∗]→i

[Y ∗]i→ ⊆ [Z∗]i→.

Thus the preferences of i satisfy the requirements of Part 1 of Definition 11.

The proof that the preferences of i satisfy the requirements of Part 2 is analo-

gous. Combining these results, we obtain that full substitutability implies monotone–

substitutability.
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