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B Proof of the Main Equivalence Result

In this Appendix, we present a proof of Theorem A.1.

We assume throughout that 2 = €); without loss of generality as all of the analysis here
considers only the sets of trades demanded by ¢ and, for any price vectors p and p such that
Pa, = Da,, we have that D;(p) = D;(p).

To prove Theorem A.1, we prove seven lemmata; we first show that all three demand

language concepts of full substitutability are equivalent.
Lemma 1. The DFS, DEFS, and DCFS conditions are all equivalent.

Proof. Tt is immediate that DEFS and DCFS each imply DFS. To complete the proof, we
show that DFS implies DEFS and that DFS implies DCF'S.

DFS = DEFS: We first show that Part 1 of DFS implies Part 1 of DEFS. Consider two
price vectors p, p’ such that p, = p/, for all w € Q,_, and p,, > p/, for all w € Q_,;, and
let Q = {w € Q:p, > p,}; note that Q C Q,,. Fix an arbitrary ¥ € D;(p); we need
to show that there exists a set ¥ € D;(p’) that satisfies the requirements of Part 1 of
DEFS.

Let g be given by
Po—¢ weW_ orwe QN

qQuw =
Pote weQNVY],,orwe VY,



for some sufficiently small € > 0. Let ¢’ be given by

/ P, wen

4w = .
G weNQNQ
v, we N

= \Pw—¢ wG\I/_n«\Qorwe[Q\\If]i_)\Q

Pote weEQNTY];NQorwe T, Q.

v, w e N
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and let V' € D;(¢'). Let ¢’ be given by

¢, —0 weW, orwe Q]
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for some sufficiently small § < €. Finally, let ¢ be given by
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Pwt€ weNY_;NQorwe ¥, ,NAQ
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W+ wel N (WU, ~NQorwe VNI, Q.

We first show five intermediate results on the effects of our price perturbations.

Fact 1: D;(q) = {¥}. We have, for any ® # ¥, that!

Ui(¥;q) — Us(®;9) = Ui(¥;p) — Us(®;p) + |V © Ple > |V © Ple > 0.

where the equality follows from the definition of ¢, the first inequality follows from

the fact that W is optimal at p, i.e., ¥ € D;(p), and the last inequality follows as

Here, we use © to denote the symmetric difference between two sets, i.e., ¥ O ® = (¥ \ @) U (& \ V).



® £ U. Thus D;(q) = {V¥}.

Fact 2: D;(q) = {V}. Consider an arbitrary ® € D;(q) and an arbitrary = ¢ D;(q).

We have that

Ui([®;q]) — Ui([E;q]) > Ui([P;q]) — Ui([E;4]) — |2 © E|6 > 0,

where the first inequality follows from the definition of ¢ and the second inequality
follows as @ is optimal at ¢, = is not optimal at ¢, and 9§ is sufficiently small. Thus,
= ¢ D;(q) and so D;(q) C D;(¢q). Combining this observation with Fact 1 yields
Di(q) = {V}.

Fact 3: D;(¢') C D;(p’). Consider an arbitrary & € D;(p’) and an arbitrary = ¢ D;(p’).

We have that

Ui([9;¢]) — Ui([Z; ¢]) = Ui([®;p']) — Ui([E;0]) — |2 © Ele > 0,

where the first inequality follows from the definition of ¢’ and the second inequality
follows as ® is optimal at p’, = is not optimal at p’, and ¢ is sufficiently small.

Thus, = ¢ D;(¢') and so D;(¢") C D;(p').

Fact 4: D;(q') C D;(¢'). Consider an arbitrary ® € D;(¢') and an arbitrary = ¢ D;(q).

We have that

Ui([®;7]) — Ui([E; 71) =2 Ui([9:¢]) = Ui([E; ¢]) — |2 © E]6 > 0,

where the first inequality follows from the definition of ¢’ and the second inequality
follows as ® is optimal at ¢/, Z is not optimal at ¢/, and ¢ is sufficiently small.

Thus, Di(7) € Di(d').



Fact 5: D;(¢') = {¥'}. We have that, for any &' # ¥’

UiV q) = U(®;7) = Ui(V';¢) = Ui(D;¢) + |V © P16 > ¥ & 9|6 > 0.

where the equality follows from the definition of ¢, the first inequality follows from
the fact that ¥ is optimal at ¢/, i.e., ¥/ € D;(¢), and the last inequality follows
as ' # U'. Thus D;(q) = {V'}.

By Part 1 of DFS, since D;(q) = {V} by Fact 2 and D;(¢’) = {¥'} by Fact 5, we have
that {w e V', :p, =p,} CV_,; and ¥, , C W, . Thus, as V' € D;(p’) by Facts 3-5,

—

we have that U’ satisfies the requirements of Part 1 of DEFS.

The proof that Part 2 of DFS implies Part 2 of DEFS is analogous.

DFS = DCFS: We first show that Part 1 of DFS implies Part 1 of DCFS. Consider two
price vectors p, p’ such that p, = p/, for all w € Q,_, and p, > p/, for all w € Q_,;, and
let O = {w € Q:p, >pl,}; note that Q C Q_,;. Fix an arbitrary ¥ € D;(p'); we need
to show that there exists a set U € D;(p) that satisfies the requirements of Part 1 of
DCFS.

Let ¢’ be given by
p,—e weW  orwe[Q\V],

/
4, =
Pote welQ\NV],,orwe v



for some small € > 0. Let ¢ be given by

Do w €N
qu = R
¢, weQ\NQ
Do wEQ
=9, —e wel ~Qorwe[Q V],
Pote wel NV NQorwel Q.
Do w e N
=po—c wel ~Qorwe[Q V],

Pote weEQNV] N Qorwel Q.

and let U € D;(q). Let g be given by

qw_5 WE@HZOYWG[Q\\DLH

Got+0 WEQNVY] ;orweV,,.

Py — O wellf_nﬂflorwe[Q\\If]i_)ﬂQ
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Pote+d welQN (VUD) ;N Qorwe [¥NT],_, Q.



Finally, let ¢’ be given by

d, =
Jo wE Q.

pl,—¢€ wel NQorwe[Q~NV]_,NAO
pl,+e weNV],NQorwe VW NQ

Po—e—0 weWNU_,~Qorwel[Q~ (VU ~\Q
Po—e+0 we WU, \Qorwe UV,
Po+e—0 we[ U~V ~Qorwe [V T, \Q
Pote+d wel N (WU, NQorwe VNI, Q.
q, wel NQorwe [N V]_,NAO

q, wE[Q\\P']_)iﬂQoerIP;_}ﬂQ

¢, —06 weWNTU  ;\Qorwe [~ (VUD),\Q
d,+0 we WU ;\Qorwe U~V \Q

d,—0 wel IV, ~Qorwe |V U],

,+0 wel QN (WU, ~Qorwe VNI, Q.
We first show five intermediate results on the effects of our price perturbations.
Fact 1: D;(¢') = {¥'}. We have, for any &' # V', that

U(W'5q") = Us(@';¢') = Ui(';p') = U (@' p') + [V © @'e > [¥' © &'e > 0.

where the equality follows from the definition of ¢/, the first inequality follows
from the fact that ¥’ is optimal at p/, i.e., ¥ € D;(p'), and the last inequality
follows as @' # U'. Thus D;(¢') = {V'}.



Fact 2: D;(¢') = {¥’}. Consider an arbitrary ® € D;(¢’) and an arbitrary = ¢ D;(¢).

For ¢ small enough, we have that,

Ui([®;7]) — Ui([E; 7]) = Ui([®:¢]) = Ui([Es ¢]) — |2 ©E[6 > 0,

where the first inequality follows from the definition of ¢’ and the second inequality
follows as ® is optimal at ¢', = is not optimal at ¢’, and ¢ is sufficiently small.
Thus, E ¢ D;(¢') and so D;(¢') € D;(¢'). Combining this observation with Fact 1
yields D;(q') = {¥'}.

Fact 3: D;(q) C D;(p). Consider an arbitrary ® € D;(p) and an arbitrary = ¢ D;(p).

We have that

Ui([9;q]) — Ui([Z;q]) = Us([@;p]) — Ui([E;p]) — [P © Ele > 0,

where the first inequality follows from the definition of ¢ and the second inequality
follows as ® is optimal at p, = is not optimal at p, and ¢ is sufficiently small. Thus,

= ¢ D;(q) and so D;(q) C D;(p).

Fact 4: D;(q) C D;(q). Consider an arbitrary ® € D;(q) and an arbitrary = ¢ D;(q).

We have that

Ui([®;q]) — Ui([E;q]) = Ui([P;q]) — Ui([E;q]) — |2 © E|6 > 0,

where the first inequality follows from the definition of ¢ and the second inequality
follows as @ is optimal at ¢, = is not optimal at ¢, and ¢ is sufficiently small. Thus,
Di(q) € Di(q).

Fact 5: D;(q) = {V}. We have that, for any ¢ # ¥,

Ui(¥;q) — Ui(®;q) = Ui(¥;9) — Us(®;9) + [V © @[0 = [¥ & D[ > 0.
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Figure 1: Proof strategy for Theorem A.1. Any unlabeled implication is immediate.

where the equality follows from the definition of ¢, the first inequality follows from
the fact that W is optimal at ¢, i.e., ¥ € D;(q), and the last inequality follows as
® #£ U. Thus D;(q) = {V}.

By Part 1 of DFS, since {¥'} = D;(¢’) by Fact 2 and D;(q) = {V} by Fact 5, we have

that {w e V', :p, =p,} CV_,; and ¥, , C W, .. Thus, as ¥ € D;(p) by Facts 3-5,

we have that W satisfies the requirements of Part 1 of DCFS.
The proof that Part 2 of DFS implies Part 2 of DCFS is analogous.

This completes the proof of Lemma 1. n

We now complete the proof of Theorem A.1 by proving that DFS implies CEFS (Lemma 2),
DFS implies CCFS (Lemma 3), DFS implies IIFS (Lemma 5), DFS implies IDFS (Lemma 6),
CFS implies DFS (Lemma 4), and IFS implies DFS (Lemma 7), as exemplified in Figure 1.

Lemma 2. If the preferences of agent i satisfy the DFES condition, then they satisfy the
CEFS condition.

Proof. Consider two finite sets of contracts Y, Z such that Y;, = Z;, and Y_,; C Z_,;. Let
Y* € Ci(Y). We will show that there exists a Z* € C;(Z) such that (Y,;\Y%,) C (Z,\2Z%,)
and Y;*, C Z' .

Let

Y=YU{(w,M)eX weQ ;}U{(w,—M)e X :weQ.,}

Z=Z0{wMeX:weQ,tU{(w,-M)eX weQ_}
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where M is sufficiently large so that ¢ would never choose (w, M) if w € Q_,; or (w, —M)
if we Q.2 It is immediate that Y;, = Z;,, and Y.,; C Z_;. It is also immediate that

Ci(Y) = Ci(Y) and Cy(Z) = Cy(2).

Let
ot er3@R) 7Y wen,
4, =
max{p, € R:Iw,p,) €Y} weQ,
5 min{p, € R:3I(w,p,) € Z} we D,
4, =
max{p, € R: Iw,p.) € Z} w € Vi

note that q? and qZ are well-defined as, for every w € , there exists a contract (w,p,) €
Y CZ by construction. Moreover, since }A};_) = ~Z-_> and }7_”- C Z_n, we have that qf = qg
for all w € Q;_, and ¢& > ¢Z for all w € Q_;.

Let W = 7(Y*); we have that ¥ € D;(¢¥). Part 1 of DEFS then implies that there exists

a U’ € D;(q?) such that

weV, ¢ =¢Z}Cv, (3)

v, C v

i—

let Z* = K[V qZ]; note that Z* € Cy(Z) = C;(Z) as W' is optimal at ¢ and qf is the best

price for w available to i from Z. Thus, we can rewrite (3) as

If (w,pw) € [Y N\ Y™, then either:

2Tt is always possible to find M large enough as utility is bounded from above and u;(@) € R.

11



ew ¢ 7(Y*) = U and so cither w ¢ 7(Z*) or ¢© # ¢Z by (4). In the former case,

it is immediate that (w,p.) ¢ Z%,;: in the later case, since ¢* > ¢Z, we must have

that q}j > qf and so there exists a (w,p,) € Z such that p, < p,, and therefore

(W,pw) ¢ Z:z

e w e 7(Y*) but there exists (w,p,) € Y such that p, < p,. In this case, (w,p,) € Z as
Y C Z, and therefore (w,p,) ¢ Z7%,;.

Thus, [Y N Y], C[Z N Z7] .
If (w,p,) € V", then w € 7(Z*) by (4). Moreover, if (w, p,) € Y;*, then p,, is the maximal

price in Y for w and so, as Y;*, = Z* ., we have that p, is the maximal price in Z for w.

i— i—)

Combining these last two observations implies that (w,p,) € Z7,,

and so Y;*, C Z* .
Thus, Z* satisfies all the requirements of Part 1 of CEFS.
The proof that DFS implies Part 2 of CEF'S is analogous. O

Lemma 3. If the preferences of agent i satisfy the DFS condition, then they satisfy the
CCF'S condition.

Proof. The proof proceeds analogously to the proof of Lemma 2. m

Lemma 4. If the preferences of agent i satisfy the CFS condition, then they satisfy the DFS

condition.

Proof. We first show that Part 1 of CFS implies Part 1 of DF'S. For any agent ¢ and price

vector p € R?, let

Xz(p) = {(waﬁw) HONS Q—)z and ﬁw Z pw} U {(waﬁw) TwE Qz—> and ﬁw S pw}a

that is, X;(p) effectively denotes the set of contracts available to agent ¢ under prices p.?

3By this, we mean that, in principle, an agent pay more for an upstream trade and receive less for a
downstream trade.

12



Let the price vectors p,p’ € R® be such that |D;(p)| = |D;(p))| = 1, p, = p., for all
w € Qiy, and p/, < p, for all w € Q_;; let {¥} = D;(p) and {¥'} = D;(p’). Let Y = X;(p)
and Z = X;(p'). Clearly, Y;, = Z;,, and Y_,; C Z_,;. Furthermore, it is immediate that
{k([¥;p])} = C;(Y), and similarly, {x([¥;p'])} = Ci(Z). Thus, Part 1 of CFS implies that

Yo N[5 p)]si € Zo N [(1Y;97)] = (5)

[K([; pD)]ies € [R5 P])]iss- (6)

From (5), we see that, if w € 7([c([¥';p])] =), ie., if w € V', and p/, = p,, then (w,p)) €
[k([¥; p])] =4, and so w € ¥_,;—in other words, {w € V.. : p/, = p,} C ¥_,;. Furthermore, as
k(W5 p))]ies € [([¥'59'])]ies by (6) and p,, = pl, for each w € Q;_,, we have that ¥, C U, ,.
Thus, ¥’ satisfies the requirements of Part 1 of DFS.

The proof that Part 2 of CFS implies Part 2 of DFS is analogous. m

Lemma 5. If the preferences of agent i satisfy the DFS condition, then they satisfy the IIFS

condition.

Proof. 1t is enough to show that DEFS and DCFS jointly imply IIFS, as DFS implies both
DEFS and DCFS by Lemma 1. Take two price vectors p, p’ € R® such that p < p/, and let
U € D;(p) be arbitrary. We will show that there exists a set of trades W' € D;(p’) such that
eiw(V) < e (V) for all w € Q; such that p, = pl,.

We let

P, weE N,

Do W E Qi

thus, pl, = p, for allw € Q,_, and p, > p,, for all w € Q_,;. Part 1 of DCFS then implies that

13



there exists a ¥* € D;(p*) such that

{weV,ip, =p3} C ¥, (7)

vr. CVv,,.

i— =

Now, note that p;, = p/, for all w € Q_,; and p}, < p/, for all w € Q,,. Part 2 of DEFS then

implies that there exists a ¥’ € D;(p') such that

{w S \I/;_) :p:; - pc,.u} - \Ij:—> (8)

Combining (7) and (8) yields

{weV, ip,=pl} SV, CU,

{w € 'p:; :p:u} - \I]:—> C Vi,

i—

Recalling the definition of p*, we obtain

{fweV.;:p, ZPL} - \I]/—n

{weV  :p,=p} TV,

this implies e;, (V) < e;,(¥') for all w € ; such that p, = pl,. O

Lemma 6. If the preferences of agent v satisfy the DFS condition, then they satisfy the ICFS

condition.

Proof. 1t is enough to show that DEFS and DCFS jointly imply IDFS, as DFS implies both
DEFS and DCFS by Lemma 1. Take two price vectors p, p’ € R® such that p < p/, and let
U’ € D;(p') be arbitrary. We will show that there exists a set of trades ¥ € D;(p) such that

eiw(V) < e (V) for all w € Q; such that p, = pl,.

14



Let

piu w €

Do W E Qiy;

thus, pf, = pl, for all w € Q_,; and pf, < p/, for all w € Q;_,. Part 2 of DCFS then implies that

there exists a ¥* € D;(p*) such that

{fwew  pi=p,} CUr,

/

Now, note that pf, = p,, for all w € Q,_, and p}, > p,, for all w € Q_,;. Part 1 of DEFS then

implies that there exists a ¥ € D;(p) such that

{W eV, ipZ :pw} C \I]in

Combining (9) and (10) yields

{weV, 1 p,=p,} SV, CTyy

—

{weVip, =p.} SV, SV,

Recalling the definition of p*, we obtain

{w € ‘P;a * Dw :p:.;} C \I[’i%

{fwev,, ip,=p.} CV;

this implies €;, (V) < €;,(¥') for all w € Q; such that p, = p,.

15
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Lemma 7. If the preferences of agent v satisfy the IF'S condition, then they satisfy the DFS

condition.

Proof. Let the price vectors p,p’ € R® be such that |D;(p)| = |D;(p')| = 1, p, = p/, for all
we Qi and pl, <p, forallw € Q_;; let {U} = D;(p) and {¥'} = D;(p’). As the preferences
of 7 satisfy the IFS condition, we have that e; , (V') < e;,(¥) for all w € Q_,; such that p, = p/,.
Thus, if p, = p/, and w € ¥’ then w € ¥ and so we have that {w € V., : p/, =p,} C V_,;.
Moreover, as the preferences of i satisfy the IFS condition, we have that e; ., (V') < e; (V) for
all w € Q,_, such that p, = p/,. Thus, if p, = p/, and w € ¥ then w € ¥V’ and so, as p, = p.,
for all p, = p/, for all w € €;_,, we have that ¥_,; C ¥’ .

The proof that Part 2 of IFS implies Part 2 of DFS is analogous. O

C Proofs of the Results Presented in Sections 4—7

Proof of Proposition 1

Consider the intermediary i. Let ® (with a typical element ¢) denote the set of potential
inputs this intermediary faces, and let ¥ (with a typical element 1)) denote the set of potential
requests. The cost of using input ¢ to satisfy request 1 is given by c, . For convenience,
when ¢ and v are incompatible, we simply say that ¢, = +00.

Let us now construct a “synthetic” agent 2 whose preferences will be identical to those
of agent i, yet will be represented in the form of “intermediary with production capacity”
preferences as defined in Section 4.2. The full substitutability of the preferences of intermediary
1 will then follow immediately from Proposition 2.

Agent 7 faces the same sets of inputs, ®, and requests, W, as agent i. Agent 7 also has
|®| x [¥| machines, indexed by pairs of inputs and requests: machine m.,, “corresponds” to
an input-request pair (¢, ). The costs of intermediary 7 are as follows (to avoid confusion,

we will denote various costs of agent 7 by “¢” with various subindices, while the costs of agent

i are denoted by “c¢” with various subindices):

16



For input ¢ and machine m,, ,; “corresponding” to input ¢ and some request 9, the
cost Cym,,, of using input ¢ in machine m, is equal to ¢, y—the cost of using input

@ to satisfy request ¢) under the original cost structure of agent 7.

e For any input ¢’ # ¢ and any request ¢, the cost ¢y, , is equal to +oo.

For request ¢ and any machine m, , “corresponding” to request ¢ and some input ¢,

the cost ¢, , 4 of using machine my, y to satisfy request ¢ is equal to 0.
e For any request 1’ # ¢ and any machine my 4, the cost ¢, , 4 is equal to +oo.

With this construction, the preferences of agents ¢ and 7 over sets of inputs and requests
are identical. Moreover, the preferences of agent 7 are those of “intermediary with production

capacity” and are thus fully substitutable (by Proposition 2). Therefore, the “intermediary’

preferences of agent ¢ are also fully substitutable.

Proof of Proposition 2

Consider first an “intermediary with production capacity” who has exactly one machine at his
disposal. It is immediate that the preferences of such an intermediary are fully substitutable.

Next, consider a general “intermediary with production capacity”, i, who has a set of
machines M (with a typical element m) at his disposal and faces the set of inputs ® (with
a typical element ¢) and the set of potential requests W (with a typical element 1), with
costs as described in Section 4.2. We will show that the preferences of intermediary ¢ can
be represented as a “merger” of several (specifically, |M| + |®| + |V|) agents with fully
substitutable preferences, which by Theorem 4 will imply that the preferences of intermediary
1 are fully substitutable.

Specifically, consider the following set of artificial agents. First, there are |®| “input
dummies”, with a typical element ¢ for a dummy that corresponds to input ¢. Second, there

are | M| “machine dummies”, with a typical element 7m for a dummy that corresponds to

17



machine m. Finally, there are |U| “request dummies”, with a typical element @E for a dummy
that corresponds to request .

Each input dummy ¢ can only buy one trade: input ¢. He can also form |M| trades as
a seller: one trade with every machine dummy m. We denote the trade between an input
dummy ¢ (as the seller) and a machine dummy 7 (as the buyer) by w, .. Likewise, each
request dummy @Z can only sell one trade: request ¥. He can also form |M| trades as a buyer:
one trade with every machine dummy . We denote the trade between a machine dummy m
(as the seller) and a request dummy ¥ (as the buyer) by wy, . Each machine dummy can
thus form |®| trades as the buyer (one with each input dummy) and |¥| trades as the seller
(one with each request dummy).

The preferences of the agents are as follows. Each input dummy and each request dummy
has valuation 0 if the number of trades he forms as the seller is equal to the number of trades
he forms as the buyer (this number can thus be equal to either 0 or 1), and —oo if these
numbers are not equal. It is immediate that the preferences of input and request dummies
are fully substitutable.

The preferences of each machine dummy m are as follows. If it buys no trades and sells
no trades, its valuation is 0. If it buys exactly one trade, say w,,, for some ¢, and sells
exactly one trade, say wy,  for some 1, then its valuation is —(cy ., + ¢,y )—the total cost
of preparing input ¢ for request ¢ using machine m in the original construction of the utility
function of agent i. In all other cases (i.e., when the machine dummy buys or sells more than
two trades, or when the number of trades it buys is not equal to the number of trades it
sells), the valuation of the machine dummy is —oco. Note that the preferences of the machine
dummy are also fully substitutable.

Consider now the “synthetic” agent 7 obtained as the merger of the |®| input dummies,
| M| machine dummies, and |¥| request dummies (see Section 5.2 for the details of the “merger”
operation). By Theorem 4, the preferences of agent 7 are fully substitutable. Moreover, the

valuation of agent 7 over any bundle of inputs and requests is identical to the valuation of

18



agent ¢ over that bundle. Thus, the preferences of agent i are fully substitutable.

Proof of Theorem 2

(‘I’7p<1>)

The indirect utility function for 4, is given by

‘A/i(q%p@)(pﬂ\q))

Wrggic@{ma%({uzkllu + Z De — Z pg}—i- Z De — Z pg}

£€~~>z £€E~>i we\l’%i we‘l/ai

Z\prélgz((p{mag{uz(\llu =)+ Z DX — Z px}}

AEE LUV, AEE; LU,

_r/r\lax{ul + Z Px — Z p,\}

AEA_; AEA;

Hence, V ®.pe) (paa) = Vi(pas, po). Now, Vi(p) is submodular over R by Theorem 6. As a

7p<1>)(

submodular function restricted to a subspace of its domain is still submodular, V Do)

’\( aP<I>

is submodular over R®>®. Hence, by Theorem 6, we see that @ is fully substitutable.

Proof of Theorem 3

Fix a set of trades ® C 2; such that u;(®) # —oo and a vector of prices Py for trades in ®.
Let D; be the demand function for trades in © ~ ® induced by af%. Fix two price vectors
p € RM® and p' € R such that |D;(p)| = |Di(p)] = 1, pw = pl, for all w € Q;, \ ®, and
po > p, forallw e Q,; N ®. Let ¥ € Di(p) be the unique demanded set from €2; ~ ¢ at
price vector p and U’ € D, (p') be the unique demanded set from 2; \. ® at price vector p'.
Note that since u;(®) # —oo, there exists a vector of prices p} for trades in ® such that, for
all = € D;((p,p%)) U D;((¢,p%)), we have & C Z. Fix an arbitrary = € D;((p, p§)) and let

==\ 9.

Claim 1. We must have U = 0.
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Proof. Suppose the contrary. Since W U® = = € D;((p, p&)), we must have

wE) =w(PU®) + Y py— > pet Y ph— O P

"pe‘iia zpexi!m pED; peD_;
>u(VUR)+ 3 py— D pet D Pp— D Py (11)
Pev; Pev_,; wed; ped_4;

The inequality (11) is equivalent to

w(PU®) + > py— > pet 2 Po— 2. D,

wG\I/i*, wE\TJHZ peD; peED,;

>u(PUD)+ > py— > pp+ > B,— . DB, (12)

YeY, Ppev_,; ped;, ped_;

However, the inequality (12) implies that U e D, (p); this contradicts the assumption that

D;(p) = {¥} given that ¥ # . O

The preceding claim implies that we must have D;((p,p%)) = {2} = {P U &} = {T U ®}.
A similar argument shows that D;((p',p%)) = {V' U ®}. The full substitutability of u; then

implies that {¢) € V', : py =pj} €V ,; and ¥;, C W] ,.

Proof of Theorem 4

We suppose, by way of contradiction, that u; does not induce fully substitutable preferences
over trades in Q ~\. Q7. By Corollary 1 of Hatfield et al. (2013), there exist fully substitutable
preferences w; for the agents ¢ € I ~. J such that no competitive equilibrium exists for the

modified economy with
1. set of agents (I ~ J) U {J},
2. set of trades Q2 ~ Q7,

3. and valuation function for agent J given by wu;.*

“4Technically, in order to apply Corollary 1 of Hatfield et al. (2013), we must have that for every pair (7, 7)
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Now, we consider the original economy with

1. set of agents I,
2. set of trades (2,
3. valuations for ¢« € I . J given by 4;, and

4. valuations for j € J given by u;.

Let [¥; p] be a competitive equilibrium of this economy; such an equilibrium must exist by

Theorem 1 of Hatfield et al. (2013).
Claim 2. [¥ \ Q7:pg o] is a competitive equilibrium of the modified economy.

Proof. Tt is immediate that [ ~\ Q7]; € D;(pa_qs) for all i € I~ J. Moreover, since ¥ is

individually-optimal for each j € J in the original economy (at prices p),

w(W)+ > pe— Y pe>u(®)+ D po— D P (13)

vev;_, Yev_,; peED; peD_,;

for every ® C ). Summing (13) over all j € J and simplifying, we obtain

> IR SIS o ED o CIERS o ot

jeJ vew, YeV jeJ pED;_, pED,
) (uj(\lf) + > e D m) > (uj@) + > pe— D Pw)
JjeJ ISV ANSEIPEN PE[UNQ]; JjeJ PE[PQ];, PE[P QY]
oW+ D pe— Y pez > w(®)+ Y pe— > pp O
jeJ ISAANRA AN ISL AN RA NS Jj€J pe[@~Q7] 5 pe[®~Q7] 5

The preceding claim shows that [U \ Q7:pg_gs] is a competitive equilibrium of the
modified economy, contradicting the earlier conclusion that no competitive equilibrium exists

in the modified economy. Hence, we see that u; must be fully substitutable.

of distinct agents in I, there exists a trade w such that b(w) = ¢ and s(w) = j. For any pair (¢, 7) of distinct
agents in I such that no such trade w exists, we can augment the economy by adding the requisite trade w
and, if i € J, letting u; (¥ U {w}) = u!(¥) (and similarly for j). It is immediate that u; is substitutable if and
only if u; is substitutable.
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Proof of Theorem 5

The proof of this result is very close to Step 1 of the proof of Theorem 1 of Hatfield et al.
(2013). The only differences are that in the Hatfield et al. (2013) results, all trades could
be bought out, and the price for buying them out was set to a single large number that
was the same for all trades. By contrast, in Theorem 5 of the current paper we allow for
the possibility that only a subset of trades can be bought out, and that the prices at which
these trades can be bought out can be different, and need not be large. Adapting Step 1
of the proof of Theorem 1 of Hatfield et al. (2013) to the current more general setting is
straightforward, but we include the proof for completeness.

Consider the fully substitutable valuation function u;, and take any trade ¢ € ;. N .

Consider a modified valuation function w;:

uf (V) = max{u;(V), us (¥~ {p}) — T}

That is, the valuation u! (V) allows (but does not require) agent ¢ to pay IL, instead of

executing one particular trade, ¢.
Claim 3. The valuation function ul is fully substitutable.

Proof. We consider utility U7 and demand DY corresponding to valuation u!. We show that
DY satisfies the IFS condition (Definition 3). Fix two price vectors p and p’ such that p < p/
and | DY (p)| = |Df(p')| = 1. Take the unique ¥ € D?(p) and ¥’ € D?(p'). We need to show
that

eiw(V) < e, (V) for all w € Q; such that p, = p,. (14)

Let price vector ¢ coincide with p on all trades other than ¢, and set ¢, = min{p,, II,}.
Note that if p, < IL,, then p = ¢ and D{(p) = D;(p). If p, > II,, then under utility U/,
agent i always wants to execute trade ¢ at price p,, and the only decision is whether to

“buy it out” or not at the cost IL,; i.e., the agent’s effective demand is the same as under
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price vector ¢. Thus, Df (p) = {EU {p}: =2 € Di(¢)}. Finally, if p, = IL,, then p = ¢q and
Df(p) = Di(p) U{ZU{¢} : E € Di(p)}. We construct price vector ¢’ corresponding to p’
analogously.

Now, if p, < pi, <Il,, then Df(p) = D;(p), DY (p') = Di(p'), and thus e;, (V) < e;, (V')
follows directly from IF'S for demand D,;.

If I, < p, < p,,, then (since we assumed that Dy was single-valued at p and p') it has to
be the case that D; is single-valued at the corresponding price vectors g and ¢'. Let = € D;(q)
and =’ € D;(¢'). Then ¥ == U {p}, V' = =" U {¢}, and statement (14) follows from the IFS
condition for demand D;, because ¢ < ¢'.

Finally, if p, < II, < p,, then p = ¢, ¥ is the unique element in D;(p), and ¥’ is equal to
=" U{¢}, where =’ is the unique element in D;(¢’). Then for w # ¢, statement (14) follows
from IF'S for demand D;, because p < ¢'. For w = ¢, statement (14) does not need to be
checked, because p, < pl,.

Thus, when ¢ € Q,_,, the valuation function v} is fully substitutable. The proof for the

case when ¢ € €)_,; is completely analogous. O

To complete the proof of Theorem 5, it is now enough to note that valuation function
(V) = maxag\pm{ui(\ﬂ NE) = Yopes HW} can be obtained from the original valuation u; by
allowing agent ¢ to “buy out” all of the trades in set ®, one by one, and since the preceding
claim shows that each such transformation preserves substitutability (and §2; is finite), the

valuation function 1, is substitutable as well.

Proof of Theorem 6

We first show that if the preferences of an agent ¢ are fully substitutable, then those preferences

induce a submodular indirect utility function. It is enough to show that for any two trades
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©,1) € €; and any prices p € R?, pgigh > p,, and pﬁfgh > py we have that®

high i high
VilPafoy Per D) — VilDa (o) D™, D)

2 Vri(pQ\{go,1j)}7ptp7p’¢') - ‘/i(pQ\{(p,w}apgighupw)- (15)

Suppose that ¢, € Q_,;.5 There are three cases to consider:

Case 1: Suppose that ¢ ¢ ® for any ® € D;(po- (¢4}, Pes Py)- Then, by individual rationality,

@ ¢ @ for all ® € D;(pa-jpuy, PEE", py). Hence,

‘/i(pQ\{tpﬂ/)}apgmde) - ‘/;<pﬂ\{%w}’pgigh’p¢) =0

and so equation (15) is satisfied, as the left side of (15) must be non-negative.

Case 2: Suppose ¢ € ® for all ® € D;(pa-qpu}, PRE", pﬁfgh). Then, by individual rationality,

p € ® forall ® e Di(pg\{wz,},pw,p}lfgh). Hence,

high igh  high ; ;
Vilportowy P ™) = VilPar ey 3% p™) = (P = p™") = D*" — 1y

and so equation (15) is satisfied, as the right side of (15) is (weakly) bounded from above

by p};gh — p, (with equality in the case that ¢ is demanded at both (po- (e}, Py, Py)

and (pQ\{go,'lZJ} ) p};gh7 pz/))) .

Case 3: Suppose that ¢ € @ for some ® € D;(po-ipu}s Po;Py) and ¢ ¢ & for some

® € D;(po- w1} pgigh, pgigh). In this case, as the preferences of i are fully substitutable,

5The definition of submodularity given in Definition 4 is equivalent to the pointwise definition given here;
see, e.g., Schrijver (2002).
6The other three cases—

1. (,OEQ_”' andwEQi_),
2. peQy; and ¥ € Q;,, and

are analogous.
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there exists a unique price pg such that there exists ®, ® € D, (Po {0} pL, plq/ljigh) such
that ¢ € ® and ¢ ¢ ®: note that Py < pIp < p};gh. Similarly, let pfo be the unique
price at which there exists ®,® € Di(pQ\{%w},pfO,pw) such that p € ® and ¢ ¢ @;
note that p, < p, < p#". By the definition of the utility function, ¢ € @ for all
o e Di(pg\{%w},ﬁ(p,piigh) for all p, < p;, and ¢ ¢ ® for all & € Di(pQ\{%w},ﬁ@,pzigh)
for all p, > pjo; similarly, ¢ € ® for all ® € D;(pa-(p0}: De, Py) for all p, < pi, and

@ ¢ @ for all ® € D;(pa-{pp}, Py, Py) for all p, > pi.

. . . l, T
Since the preferences of ¢ are fully substitutable, p; < p/. Hence,

high i high
‘/;(pﬂ\{cp,¢}ap<pap¢g ) - ‘/;(pﬂ\{cp,tb}apgghapqu )

= Vi(pa- (o} Por Dy >) — Vi(Pafpu}s Do P2
+ Vi(Pa gy DL Do) — Vilpa- (o) PEE", D)
=Pyt p; —0
> —py+py — 0
= Vi(Pa-gewys P Pu) = VilDagpw): D Do)

+ %(pﬁ\{ap@}vpiapw) - ‘/i(pﬂ\{go,wbpggh?pw)

- V;(pﬂ\{cp,@b}vpvupw) - W(pﬂ\{g@,w}>p1;igh7pw)u

which is exactly (15).

Now, suppose that the preferences of ¢ are not substitutable. We suppose moreover that the
preferences of i fail the first condition of Defintion 2.7 Hence, for some price vectors p,p’ € R
such that |D;(p)| = |D;(p)| = 1, p, = p., for all w € Q;_,, and p,, > p[, for all w € Q_,;, we
have that for the unique ¥ € D;(p) and V' € D;(p'), either {w € V', : p, = p/,} Z ¥_,; or
U, , W, .. We suppose that {w € V', : p, = p,} € ¥_,;; the latter case is analogous. Let

eV i~{weV,, p,=p,} Let ple" be a price for trade ¢ high enough such that ¢ is

"The case where the preferences of i fail the second condition of Defintion 2 is analogous.
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not demanded at either (ple", po. q,1) or (P&, Pl (}). Hence,

‘/;<p<ﬂ7p§2\{go}) - V;(p};gh7p§)\{<p}) =0

while

‘/i(ptpvpﬂ\{cp}) - ‘/i(p};gh7p§2\{<p}) > 0.

Thus we see that V; is not submodular.

Proof of Theorem 7

The proof is an adaptation of the proof of Theorem 1 of Sun and Yang (2009) to our setting.
As our model is more general than that of Sun and Yang (2009)—we do not impose either
monotonicity or boundedness on the valuation functions, and we do not require that the seller
values each bundle at 0 and thus sells everything that he could sell —we have to carefully
ensure that the Sun and Yang (2009) approach remains valid.

We show first that IDFS and IIF'S imply the single improvement property. Fix an arbitrary
price vector p € R® and a set of trades W ¢ D;(p) such that u;(¥) # —oo. Fix a set of trades
= € D;(p). We focus exclusively on the trades in ¥ and = by rendering all other trades that
agent ¢ is involved in irrelevant. To this end, we first define a very high price II,

Il = max {|Ui([91;p])_Ui([QQ;p)|}+g1€%2}f{|pw|}+17

Q1 CQ4,u; (Q1)>—00,
QggQi,ui(92)>*OO

and then, starting from p, we construct a preliminary price vector p’ as follows:

P weWVUEorwé

po—1II weQ , N (VUE).
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Observe that U ¢ D;(p) and = € D;(p’). As ¥ # =, we have to consider two cases (each with
several subcases), which taken together will show that there exists a set of trades ® # ¥

that satisfies conditions 2 and 3 of Definition 5 and U;([®'; p]) > U;([¥; p]).

Case 1: =~V # @. Select a trade & € =~ W. Without loss of generality, assume that

agent i is the buyer of & (the case where i is the seller is completely analogous).

Starting from p’, construct a modified price vector p” as follows:

" p:u w e Qz AN ((E_ﬂ AN (\I’_n U {51})) U \Ifl_>> or w ¢ Ql

P, =

First, since = € Dy(p'), &1 € E, and pg, = pf,, full substitutability (Definition A.5)
implies that there exists =7 € D;(p”) such that & € Z”. Second, observe that following
! "

the price change from p’ to p”, (2”,,\V_,;) C{&} and ¥,, C = ,. Thus, =7, \V_,; =

{&} and U, C E .. We consider three subcases.

Subcase (a): =/, \ VU, # @. Let & € E, N\ ¥,_,. Starting from p”, construct price
vector p” as follows:
pg w € Qz AN ((EZ_> AN (\Ijz—> U {52})) U \Ij_>z> or w ¢ Qz

/11

Pl =
pl—11 we (N (Vi U{&L)))uw,.

First, since " € D;(p"), & € =7, and pg, = pg,, full substitutability (Defini-

tion A.6) implies that there exists =" € D;(p") such that & € ="”'. Second, observe

that following the price change from p” to p”, ¥ C =" and Z” \ ¥ C {{, &}

Thus, U NZ" =@ and 2”7 N\ U = {&,&} or {&}.

Since " € D;(p""), we have U;([V, p"]) < U;([Z", p"]). Furthermore, observe that

from the perspective of agent i the only differences from ¥ to = are making one
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new sale &, i.e., €, (V) > €, (2") with & € Q;, \ U, and (possibly) making

one new purchase &, i.e. €;¢, (V) < e;¢ (") with & € Q_,; N 0.

Subcase (b): Z/, \ VU, , =g and V_; N Z", # 3. Let ¢y € U_,; \ E’,,. Starting
from p”, construct price vector p”’ as follows:

J28 weELN((EnNTU)U (W ~{Y}) orw ¢ Q;

/11

b, =

First, since " € D;(p"), ¥ ¢ Z", and pjj, = p//, by full substitutability (Defini-
tion A.6) implies that there exists =" € D;(p") such that ¢ ¢ ="”. Second, observe
that following the price change from p” to p™”, U\ Z" C {¢p} and 2" N\ ¥ C {& }.
Thus, U N EZ" = {¢} and 2" NV = {& } or @.

Since Z” € D;(p""), we have U;([V, p"]) < U;([Z”, p"]). Furthermore, observe that
from agent i’s perspective the only differences from ¥ to =" are canceling one
purchase 1, i.e., €; (V) > €; ,(Z") with ¢» € U_,;, and (possibly) making one new

purchase &, i.e., ;¢ (V) < e;¢, (2") with §& € Q_; N V.

Subcase (c): 2/ =V U{&}. Let p” =p” and 2 = Z". Since =" € D;(p"), we have
Ui([¥,p"]) < U ([Z2",p"]). Furthermore, observe that from agent i’s perspective

"

the only difference from ¥ to =" is making a new purchase &, i.e., e;¢ (V) <

eie (2") with § € Q_; N\ 0.

Case 2: =~V =g and ¥ \ = # @. Select a trade ¢; € ¥~ =. Without loss of generality,

assume that agent 7 is a buyer in ¢; (the case where 7 is a seller is completely analogous).

Starting from p’, construct price vector p” as follows:

Y Do, we QN (Vo N {}) orw &

Py, =
p,—11 we W, ~ {1}
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First, since = € D;(p'), ¥1 ¢ =, and p, = py),, full substitutability (Definition A.6)
implies that there exists =" € D;(p”) such that ¢y ¢ Z”. Second, observe that following
the price change from p’ to p”, 2" C W and ¥_,;\Z",, C {¢1}. Thus, V_,;\NE", = {¢1}

and = C W. We consider two subcases.

Subcase (a): U, , N E/, # &. Let ¢y € U, \EY,. Starting from p”, construct price

vector p” as follows:

8 we QN (Vi N {Yr}) orw ¢ Q

/11

Po =
pZ+H Weqjiﬁ\{d@}'

First, since =" € D;(p"), 12 ¢ =", and py,, = pjj;,, full substitutability (definition

A.5) implies that there exists =" € D;(p"") such that ¢y ¢ Z". Second, observe

that following the price change from p” to p"”, Z” C W and ¥ N Z" C {41, 1}.

Thus, 2"\ ¥ = @ and U N E” = {1,192} or {¢»}.

Since " € D;(p""), we have U;([V,p"]) < U;([Z", p"]). Furthermore, observe that

from agent i’s perspective the only differences from ¥ to =" are canceling one
=

sale 1, 1.e., €4, (V) < €4, (E") with ¢ € Q,, N U, and (possibly) canceling one

purchase 11, i.e., €; 4, (V) > e; 4, (") with ¢, € ¥_,;.

Subcase (b): Z" = U ~\ {¢1}. In this subcase, let p” = p” and Z” = =". Since
=" e D;(p"), we have U;([V, p"]) < U;([Z2”,p"]). Furthermore, observe that from
the perspective of agent i, the only difference from ¥ to =" is canceling purchase

wla ie., €i (‘If) < €y, (E/”) with 101 e Q.

Taking together all the final statements from each subcase of Cases 1 and 2, if we take
¢’ = =" we obtain that we always have a price vector p” and the sets ¥ and &’ that
satisfy conditions (2) and (3) of Definition 5. Moreover, since we always have ® € D;(p”),

Ui([¥p"]) = Ui([P, p"))-
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Next, we show that U;([®',p"]) — U;([¥, p"']) > 0 implies U;([®', p]) > U;([¥, p]). First,
observe that when taking the difference the prices of all trades w € ®' N ¥ cancel each other

out. Thus, replacing the prices p/” with p, for all trades w € ® N ¥ leaves the difference

unchanged. Second, observe that in all previous subcases, the construction of p” implies
that for all w € (U \ @)U (' \V)), p, = p”. Combining the two observations above,
Ui([®',p"]) = Ui([¥, p"]) = Us([®', p]) — Us([¥, p]), and therefore U;([®', p]) = Ui([¥, p]).

We now show that there exists a set of trades ® that satisfies all conditions of Definition 5.
Since ¥ ¢ D;(p), Vi(p) > U;([¥; p]). Since i’s utility is continuous in prices, there exists ¢ > 0

such that V;(q) > U;([V; ¢]) where ¢ is defined as follows:

D, t+ € WE(Qﬁi\\lfﬁi)u\lliH
qQuw =
Do —€E WE (QZ_> ~ \Iji—>) Uw_,,.

Our arguments above imply that there exists a set of trades ® # W such that U;([®;¢q]) >
Ui([¥;q]). Using the construction of ¢, we obtain U;([®;p]) — U;([V;p]) = Ui([®;4q]) —
Ui([W;q]) +e|(U N D) U (PN U)| > Ui([P;q]) — Us([¥; ¢]) > 0. Thus, U;([®;p]) > Ui ([¥; pl).
This completes the proof that IDFS and ITFS imply the single improvement property.

We now show that the single improvement property implies full substitutability DCF'S.
More specifically, we will establish that single improvement implies the first condition of
Definition A.4. The proof that the second condition of Definition A.4 is also satisfied uses a
completely analogous argument.

Let p € R® and ¥ € D;(p) be arbitrary. It is sufficient to establish that for any p’ € R?
such that p), > py, for some ¢ € Q_,; and p, = p,, for all w € Q\ {¢}, there exists a set of
trades ¥’ € D;(p’) that satisfies the first condition of Definition A.4.

Fix one p’ € R® that satisfies the conditions mentioned in the previous paragraph and let
¥ € Q_,; be the one trade for which p), > p,. Note that if either 1) ¢ W or W € Dy(p'), there

is nothing to show. From now on, assume that ¢y € ¥ and ¥ ¢ D;(p’).
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For any real number € > 0 define a price vector p° € R? by setting Py = py + € and
PE, =p, for allw € Q\ {¢¥}. Let A = max{e: ¥ € D;(p°)}. Note that A is well defined since
i’s utility function is continuous in prices. Furthermore, given that ¥ ¢ D;(p'), we must have
A <ply—py.

Next, for any integer n, define a price vector p” € R® by setting Py =Py + A+ % and
pt =p, for all w € Q\ {¢}. By the definition of A we must have ¥ ¢ D;(p") for all n > 0.
By the single improvement property, this implies that for all n > 0, there exists a set of

trades ®™ such that the following conditions are satisfied:
LU, p"]) < Ui([@", p"]),
2. there exists at most one trade w such that e; (V) < e;,(P"), and
3. there exists at most one trade w such that e;,(¥) > e;,(P").

Note that we must have ¢ ¢ ®" for all n > 1. This follows since for any n > 1 and any set
of trades @ such that ¢ € ®, U;([®;p"]) = Ui([®;p]) —A— L < U;([¥;p]) —A— L = U ([¥;p"))
given that U € D;(p).

Conditions 2 and 3 imply that for all n > 0, we must have {w € V_,; : p,, = p,} ={w €
U, pl=p,} CO", and O, C W, ,.

Since the set of trades is finite, it is without loss of generality to assume that there is a set
of trades ®* € 2; and an integer n such that ®" = ®* for all n > n. Since ¢’s utility function
is continuous with respect to prices and p® — p®, we must have U;([®*; p?]) > U;([¥; p2)).
Since W € D;(p?), this implies ®* € D;(p?). Since A < Py — Py and V; is decreasing in the
prices of trades for which i is a buyer, we must have V;(p?) > V;(p'). Since ¢ ¢ ®*, we have
that U, ([®*;p']) = Ui([@*; p?]) = Vi(p?). Hence, ®* € D;(p’) and setting ¥’ = &* yields a set

that satisfies the first condition of Definition A.4.
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Proof of Theorem 8

The proof is an adaptation of the proof of Theorem 1 of Gul and Stacchetti (1999). Since we
impose neither monotonicity nor boundedness conditions on valuation functions, there are a
number of details needed in order to check that Gul and Stacchetti (1999) proof strategy
works in our setting.

Throughout the proof, for any price vector p € R®, we denote by D; (p) the sets of objects
that correspond to the optimal sets of trades in D;(p).

We show first that the single improvement property in object-language implies the no
complementarities condition. Let p be an arbitrary price vector and ®, ¥ € D, (p) be arbitrary.
Let ¥ C W ~ ® be arbitrary. Let E € Di(p) be a set of objects such that 2 C ® U ¥ and
¥\ ¥ C E, and such that there is no &’ € Di(p) for which & C @ U ¥, ¥\ ¥ C & and
2 N¥| < |ENT|. IfEN WY =@, we are done. If not, let I be a very large number® and
define p(e) by setting pyw)(e) =l if w € Q; N (PUW), pyoy(e) = —Ilif w € Q;, N (PUW),
Piw)(€) = Py if w € (PU W) N ¥, and Piw)(€) = Prw) Feif w € W. Note that for all
e > 0 we must have ® € D;(p(¢)) (since ¥ C ¥\ ®) and U;([®;p(c)]) > Ui([E;p(e)]).
Since E € D;(p), we must have u;(E) # —oo. Hence, we can apply the single improvement
property (in object-language) to infer that there must exist a set of objects E' such that
EN\NE| <1, |E\E| <1, and U([E;p(e)]) > Ui([E;p(e)]). Given the definition of p(e)
and II, we must have & C & U W. Since U;([E';p(e)]) > U;([E;p(e)]) holds for arbitrarily
small values of &, we must have 2 € D;(p). But U;([Z';p(e)]) > Us([E; p(e)]) is equivalent to
Ui([E:p) — |2 N®le > Us([E: p]) — |2 N Ple. Given that 2, &' € D;(p), the last inequality
is equivalent to |2’ N ¥| < |EN ¥| and we thus obtain a contradiction to the definition of
E. Hence, it has to be the case that 2N ¥ = @ and this completes the proof that single

improvement implies no complementarities.

8For instance, let

Qlcmﬁgzcni,uigzlf%f;foo,ui(nz)»oo| (1215 p]) = Us([$22; p])|

and I = 1+ A + max,ecq, [pw|-
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Next, we show that the generalized no complementarities condition implies object-language
full substitutability. Let p,p’ be two price vectors such that p < p/. Let ¥ € Di(p) be
arbitrary.? Let Q; = {w € Q@ pywy < p{(w)}. The proof will proceed by induction
on |Q;]. Consider first the case of |[€;| = 1 and let Q; = {w}. Clearly, if w ¢ ¥ or
U € Dy(p/), there is nothing to show. So suppose that w ¢ ¥ and that ¥ ¢ D;(p)).
For any € > 0, define a price vector p(e) by setting py,)(€) = pyy) for all ¢ # w, and
Piw)(€) = D) + €. Let & = max{e : ¥ € D;(p(¢))} and note that & < Piw) — Pilw)
given that ¥ ¢ D;(p'). Consider some £ > & and fix a set of objects ® € D;(p(c)). It is
casy to sce that w ¢ ® and that ® € D;(p(¢)). By the generalized no complementarities
condition, there must exist a set of objects 2 C ® such that ¥ := ¥\ {w} UZ € D;(p(2)).
Clearly, we must also have ¥’ € D;(p') and this completes the proof in case of |€;| = 1.
Now suppose that the statement has already been established for all pairs of price vectors
p,p’ such that ]Ql\ < K for some K > 1. Consider two price vectors p,p’ such that
€| = K + 1. Fix a set of objects ¥ € D;(p). Let w € ; be arbitrary and consider a
price vector p” such that p;’(w) = Pyw) and p{’(LP) = pi(cp) for all ¢ # w. By the inductive
assumption, there is a set U” € D;(p") such that {¢p € ¥ : pi’(so) = pyy)} € ¥". Note that
{p €W :py,) =pupt = {¥ € ¥, =Dt \ {w} Applying the inductive assumption
one more time, there has to be a set W’ € D;(p') such that ¥” \ {w} C ¥'. Combining this
with the previous arguments, we obtain {p € V¥ : pft(‘P) = D)} € ¥'. This completes the

proof.

Proof of Theorem 9

As () is finite and non-empty, for each agent ¢ the domain of u; is bounded and non-empty.
Hence, by Part (b) of Theorem 7 of Murota and Tamura (2003), we see that u; is M*-concave

over objects if and only if the preferences of ¢ have the single-improvement property.!’ The

9There is no need to rule out the possibility of several optimal bundles of objects in this proof.
198trictly speaking, Theorem 7(b) shows the equivalence of M?*-convexity and the (M?-SI) property of
a function f. It is, however, immediate that this result implies the equivalence of M!-concavity and the
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result then follows from Theorem 7.

Proof of Theorem 10

We assume throughout that Q = §2; (and so X = X;); this is without loss of generality as all
of the analysis here considers only the sets of contracts demanded by 7 and, for any sets of

contracts Y and Z such that Y; = Z;, we have that Y* € C;(Y) if and only if Y* € C;(Z).

Step 1: We show first that full substitutability implies monotone—substitutability for oppor-
tunity sets such that the choice correspondence is single-valued. That is, we will show
for all finite sets of contracts Y and Z such that |C;(Y)| = |Ci(Z2)| =1, Vi, = Z;,
and Y.,; C Z_;, for the unique Y* € C;(Y) and the unique Z* € C;(Z), we have
127 = Y2l = 128 = Y

Fix a fully substitutable valuation function w; for agent 7. Consider two finite sets

of contracts Y and Z such that |C;(Y)| = |Ci(Z2)| =1, Vi, = Z;,, and Y_,; C Z_,;.

Assume that for any w € Q,,, if (w,p,) € Vi, and (w,p),) € Yi,, then p, = pl; this is

without loss of generality, because for a given trade w € €;_,, agent 7, as a seller, will

only choose a contract with the highest price available for that trade, and thus we can

disregard all other contracts involving that trade.

Let Y* € C;(Y) and Z* € C;(Z). Define a modified valuation @; on 7(Z;) for agent i

by setting, for each ¥ C 7(Z;),
For all feasible W C Z, let

UW)=a(r(W)+ > p— > b

(w,pw)E(Z\W)ia ("%pw)EWA)i

single-improvement property for a function g = —f.
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and let C; denote the choice correspondence over Z associated with U;. By construction,

i (V) = ui(0:(¥)), (16)

where here the object operator o is defined with respect to the underlying set of trades

T(Z):

0;(¥)={o(w) :we V. ,;}U{o(w): weT(Z)\V.,}

As the preferences of ¢ are fully substitutable, the restriction of those preferences to

7(Z) is fully substitutable, as well.!!

Thus, the restriction of i’s preferences to 7(7) is
object-language fully substitutable and so #; satisfies the gross substitutability condition

of Kelso and Crawford (1982) over objects.

Now, we must have C;(Y) = {Y*, U (Z \Y*),,} and Ci(Z) = {Z*,, U (Z ~ Z*),}.
As we assume quasilinearity, the Law of Aggregate Demand for two-sided markets
applies to C, (by Theorem 7 of Hatfield and Milgrom (2005)). As Y C Z, this
implies that |Z*,, U (Z ~\ Z%),| > |V, U (Z N\ Y™*),|; this inequality is equivalent to
|Z*%,| — | Z5,| > |Y%,| — Y5, |, which is precisely the Law of Aggregate Demand. We

also immediately have that Y, , \Y*, C Z,, N\ Z%,, and V", C Z7

* ., as the preferences
of 7 are fully substitutable. Thus the preferences of ¢ satisfy the requirements of Part 1

of Definition 11 when the choice correspondence is single-valued.

The proof that the preferences of ¢ satisfy the requirements of Part 2 of Definition 11
when the choice correspondence is single-valued is analogous. Thus, combining the
preceding results, we obtain that full substitutability implies monotone—substitutability

for opportunity sets such that the choice correspondence is single-valued.

Step 2: We now use Step 1 to show that full substitutability implies monotone—substitutability.

To see the full substitutability of U;, note that the full substitutability of the restriction of U; to any
subset of X follows immediately from the fact that the preferences of i satisfy CFS.
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For this step, let

W(W;Y) =u(0) — Y inf{py: (V,py) €Y+ D sup{py: (¢, py) €Y},

'Q[}E‘I/Hi we‘l’ia

where we take inf @ = oo and sup @ = —oo; that is, 4(¥;Y) is the utility that 7 obtains
from the set of trades ¥ and both paying, for each trade in V_,;, the lowest price
corresponding to a contract in Y and receiving, for each trade in W;_,, the highest price

corresponding to a contract in Y.

We also extend the operator 7 to sets of sets of contracts, so that 7()) = Uyey{7(Y)}

for any Y C p(X).

Finally, it is helpful to define an operator which, given a set of available contracts W,
makes each trade in 7(W’) slightly more appealing to i relative to W’ and each trade

not in 7(W’) slightly less appealing to i relative to W’. Let

r(W;W'e)={(w,p, —¢) € X : (w,p,) € W}
U{(w,py+¢) € X :(w,p,) €W~WIl}
U{(w,pw+e) € X (w,po) € WL}

U{(w,po—¢) € X : (w,p,) € W~WL}
The r function here allows us to perturb sets of contracts so as to obtain unique choices,
similar to the methods used to prove Lemma 1.

Observation 1. For all sets of contracts W, Y, Z C X such that Y C Z, we have that

r(Y;W,e) Cr(Z;W,e) for all e > 0.

Now, we consider two finite sets of contracts Y and Z such that Y;,_, = Z,_, and Y_,; C
Z_,;. Fix an arbitrary Y* € C;(Y'); we need to show that there exists a set Z* € C;(Z)

that satisfies the requirements of Part 1 of Definition 11. Let Z* € C;(r(Z;Y*, ¢)).
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We first show five intermediate results on the effects of our price perturbations, where

we € > 0 to be sufficiently small and 6 > 0 to be sufficiently small given ¢.

Fact 1: C;(r(Y;Y*,¢)) = {r(Y*;Y*, ¢)}. We have that, for any feasible W C Y such
that W £ Y* 1213

U(r(Y*Y*,e) = U(r(W;Y*,e)) =U,(Y") —U; (W) + |[Y* o W|e
> Y e Wle

>0,

where the equality follows from the definition of r, the first inequality follows from
the fact that Y* is optimal at Y (i.e., Y* € C;(Y)) and the second inequality follows
from the fact that W # Y*. Thus, we see that C;(r(Y;Y™*,¢)) = {r(Y*;Y* &)},
as desired.

Fact 2: 7(Ci(r(r(Y;Y* €); Z*,8))) C 7(Ci(r(Y;Y*,¢))). Consider an arbitrary ® €
T7(Ci(r(Y;Y*,e))) and an arbitrary = ¢ 7(C;(r(Y;Y*,¢))). For £ small enough,

we have that,

WOy r(r(Y;Y",€); 27,0)) — a(Z;r(r(Y; Y™, €); 27, 6))
> a(P;r(Y;Y" ) —a(E;r(Y; Y, e) — | PO =S

> 0,

where the first inequality follows from the definition of r and the second inequality
follows as @ is associated with an optimal set of contracts at r(Y;Y™*, ), Z is not
associated with an optimal set of contracts at r(Y;Y™*, ¢), and ¢ is sufficiently

small. Thus, Z & 7(Cy(r(r(Y;Y*,e); Z*,6))) and so 7(Cy(r(r(Y;Y* &); Z*,6))) C

12Note that there is a natural one-to-one correspondence between (feasible) subsets of Y and (feasible)
subsets of (Y;Y™*, ¢).
13Here, we use © to denote the symmetric difference between two sets, i.e., WoW' = (W~ W )U(W ~W').
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T(Ci(r(Y; Y™ €))).

Fact 3: 7(C;(r(Z;Y*,¢))) C 7(Ci(Z)). Consider an arbitrary ® € 7(C;(Z)) and an

arbitrary = ¢ 7(C;(Z)). For € small enough, we have that

W(Q;r(Z;Y " e)) —u(Er(Z; Y)Y e) > a(P; Z) — u(E; Z) — [P Ele

> 0,

where the first inequality follows from the definition of r and the second inequality
follows as ® is associated with an optimal set of contracts at Z, = is not associated
with an optimal set of contracts at Z, and ¢ is sufficiently small. Thus, = ¢
T7(Ci(r(Z;Y*,¢))) and so 7(C;(r(Z;Y*,¢))) C 7(Ci(Z2)).

Fact 4: 7(Ci(r(r(Z;Y*,€)); Z2*,6))) C 7(Ci(r(Z;Y*,¢))). Consider an arbitrary ® €
7(Ci(r(Z;Y*,¢))) and an arbitrary = ¢ 7(C;(r(Z;Y*,¢€))). For § small enough,

we have that

WO;r(r(Z;Y 7€) 27,6)) — a(Z;r(r(Z,Y ", e); 27, 6))
>u(P;r(Z;Y"e)) —au(E;r(Z;Y"e) — | P E|S

> 0,

where the first inequality follows from the definition of r and the second inequal-
ity follows as @ is associated with an optimal set of contracts at r(Z;Y ™, ¢),
= is not associated with an optimal set of contracts at r(Z;Y™* ¢), and 0 is
sufficiently small. Thus, = ¢ 7(C;(r(r(Z;Y*,¢); Z*,8))) and so we have that
T(Ci(r(r(Z;Y*,€); Z*,0))) C 7(Ci(r(Z;Y*,¢))).

Fact 5: Ci(r(r(Z;Y* ¢); 2*,6)) = {r(Z*; Z*,6)}. We have that for any feasible W C
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r(Z;Y*, e) such that W # JARD

U (r(Z2%,8)) — Ui(r(W; Z*,8)) = U;(Z*) — U;(W) + |Z* & W6
> |Z* o WS

>0

where the equality follows from the definition of r, the first inequality follows from
the fact that Z* is optimal at r(Z;Y* e), ie., A= Ci(r(Z;Y*,€)), and the last

inequality follows as W # Z*. Thus Ci(r(r(Z;Y*,¢); Z*,6)) = {r(Z*; Z*,6)}.

Combining Facts 1 and 2 shows that there is a unique element of 7(C;(r(r(Y; Y*, €); Z*,5)))

and, since r(r(Y; Y™, ¢); A 9) is a finite set, there must therefore exist a unique
Y* e Cy(r(r(Y;Y*,e); Z2*,6)).

Fact 5 shows that Z* = r(Z*; 2*7(5) is the unique element of C;(r(r(Z;Y™*, ¢); Z*,(S)).
Thus, as [r(r(Y;Y* €): Z*,0)] o C [r(r(Z;Y*,€); Z*, )]s by Observation 1 (as Y,; C
Z_:) and [r(r(Y;Y*,€); 2, 0)]is = [r(r(Z; Y™, €); 2*,0)]iss (as Yi, = Z;_,), Step 1 of

the proof implies that

ANIE VAN G N (17a)
[r(r(Y;Y*,): Z2%,0)| i N Y2, C [r(r(Z;Y*,e): Z%,0)] =i ~ 27, (17b)
Y5 C 7y, (17¢)

Each contract (w,p,,) in Y, has the property that p, is the minimal price associated
with w among all prices associated with w by some contract in r(r(Y;Y™*, ¢); Z*, 0) as

Y* is optimal at r(r(Y;Y*,e); Z*,6). Similarly, each contract (w,p,) in Z*,, has the

4Note that there is a natural one-to-one correspondence between (feasible) subsets of Z, (feasible) subsets
of r(Z;Y*,¢e), and (feasible) subsets of r(r(Z;Y™*,¢e); Z*,9).
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property that p, is the minimal price associated with w among all prices associated
with w by some contract in r(r(Z; Y*, ¢); A 8) as Z* is optimal at r(r(Z; Y™, ¢); A J).
Moreover, each contract (w,p,) € }7@: has the property that p,, is the maximal price
associated with w among all contracts associated with w in r(r(Y; Y™, ¢); A §), as Y* is
optimal at r(r(Y; Y™, ¢); A §). Similarly, each contract (w,p,) € Z;", has the property
that p,, is the maximal price associated with w among all contracts associated with w
in r(r(Z;Y*,€); Z*,0), as Z* is optimal at r(r(Z;Y* ¢); Z*,5). We thus rewrite (17b)

and (17c¢) (while maintaining (17a)) as
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1225 = 1Z5 ] = Y25, = [V (18a)
(w,py) € T(T(Y;Y*,a);Z*,é) : (w,py) € r(r(Z; Y*,s);Z*ﬁ) :
wéT(Y*)or wéT(Z%.) or
¢ 7(Y3,) A - ¢7(2%;) A (18h)
w, pu) € r(r(Y;Y*,2); 2%, 0) Hw, pu) € r(r(Z;Y*,€); 2*,0)
such that p, < p, ‘ such that p, < p,, A
= = - —1
(w,py) € T(r(Y;Y*,&);Z*,&) : (w,py) € r(r(Z; Y*,s);Z*,é) :
we T(Y*) and weT(Z:) and
( —n) ) g ( Z—>) A (18C)
Hw, po) € r(r(Y;Y*,e); 27,6) Bw, po) € r(r(Z;Y",€); 27,0)
such that p,, < p, ' such that p, > p., _
4 —1 L 11—

Combining Facts 1 and 2 yields that 7(Y*) = 7(Y*), implying that |Y*,| = [Y*,| and



Y%,| = |Y;,|, and so we have

1253 = 1251 2 Y2 = YL (19a)
(w,po) € r(r(Y;Y*,2); 2%,0) : (w,po) € P(r(Z;Y",2); 2%,6) -
wé¢ (YY) or w ¢ T(Z%,) or
#rizyor . #riZigor o)
Hw,p,) € r(r(Y;Y* e); Z*,9) Hw,p,) € r(r(Z;Y*e); Z2*,0)
such that p, < p, ‘ such that p, < p, 4
4 = o —1
(w,po) € r(r(Y;Y*,2); 2%,0) : (w,po) € P(r(Z;Y",2); 2%,6) -
w e 7(Yr,) and weT(Zr,) and
() nd . Zymd (190)
Bw,p.) €r(r(Y;Y*e); 2%,0) Bw,po) €r(r(Z;Y* e); 2%,9)
such that p, > p, , such that p, > p, .

Similarly, combining Facts 3-5 yields that there exists Z* € C;(Z) such that 7(Z*) =

7(Z*), implying |Z*,;| = |Z*%,,| and |Z¢,| = | Z7,|, and so we have

223 — |25, 2 Y5 = Y (20a)
(w,po) € r(r(Y;Y",2); 27,6) (w,p) € P(r(Z;Y",2); 27,6) -
wé¢ T(YY,) or w ¢ T(Z%,) or
#rizor . #rizigor 200
Hw, pu) € r(r(Y;Y",€); 27,6) 3w, p) € 1(r(Z;Y",€); 27,9)
such that p, < p, ' such that p, < p, 4
:—>l - —1
(w,po) € r(r(Y;Y™,2); 27,6) (w,po) € r(r(Z;Y",); 27,0) :
w e 7(Yr,) and w € 7(Z;,) and
Bw,p.) €r(r(Y;Y* ) 2%,0) Bw,p.) €r(r(Z;Y* ¢); 2%,9)
such that p, > p, 4 such that p, > p, .
H1—= o i—

We have, by (20c) that, if w € 7(Y;*,), then w € 7(Z},); moreover, since Y;, = Z;_, by

assumption, the set of prices corresponding to a given w € €);_, is the same in Y and Z.
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We thus rewrite (20c) (while maintaining (20a) and (20b)) as

2% = 125] = Y2 = YL (21a)
(w,pw) € r(r(Y;Y",2); 2%,0) : (w,pw) € 1(r(Z;Y*,€); 2%,0) :
w ¢ T(YE) or w ¢ T(Z%,,) or
#riz)or . #rizigor 1)
Hw,p,) €r(r(Y;Y*, e); Z%,9) w,py,) € r(r(Z;Y*,e); Z2*,0)
such that p, < p, 4 such that p, < p, '
~ :*)Z : _ —1
(w,pw) €Y : (w,pw) € Z -
weT(Yr) and w e T(Z:,) and
ﬂ(waﬁu) ey ﬂ(waﬁw) €z
such that p, > p, . such that p, > p, ,
- 1= L Ji—

We have, by (21b) that, if w ¢ 7(Y%,), then w ¢ 7(Z*,;); moreover, since Y_,; C Z_,;
by assumption, the set of prices available for a given w € €)_,; is larger in Y than in Z.

We thus rewrite (21b) (while maintaining (21a) and (21c)) as
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122 = 125 = Y2, = [V (22a)
(w,p,) €Y : (w,py) € Z:
wéT(Y™) or wé& T(Z*%.) or
¢ T(Y3) c ¢7(2%,) (22D)
Iw,pn) €Y Iw,pu) €7
such that p, < p, A such that p, < p, ‘
: —1 : : —1
(w,pu) €Y : (w,p) € Z:
weT(Y:X) and we T(ZF,) and
Bw,po) €Y Hw,pu) € Z
such that p, > p, _ such that p,, > p. _
- 41— L d1—



We rewrite this expression as

125 = 1251 = Y25 = 1Y

[Y N Y*]—n' g [Z N Z*]—n'

Y <127

Thus the preferences of i satisfy the requirements of Part 1 of Definition 11.

The proof that the preferences of ¢ satisfy the requirements of Part 2 is analo-
gous. Combining these results, we obtain that full substitutability implies monotone—

substitutability.
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